Abstract:With the rapid increasing of pollution in aquatic ecosystem in the past few decades,the toxicity mechanisms of xenobiotics on aquatic organisms,especially on aquatic fish attract serious concerns.Marine medaka and zebrafish are regarded as potential model organisms for ecotoxicological study due to their advantages on culture,physiological features and genomic information,especially for their applications in toxicoproteomics.The toxicoproteomic study of marine medaka and zebrafish not only contributes to unveiling the toxicity mechanisms of xenobiotics,but also help to screen specific proteins as biomarkers for risk assessment.In this review,we summarize the recent progresses on toxicoproteomics of marine medak and zebrafish.
ZHANG Ling. Research progress on toxicoproteomics in fish: Using marine medaka and zebrafish as models[J]. Marine Environmental Science, 2015, 34(4): 616-621.
FOUNTOULAKIS M.Proteomics:current technologies and applications in neurological disorders and toxicology[J].Amino Acids,2001,21(4):363-381.
[2]
WILKINS M R,SANCHEZ J-C,GOOLEY A A,et al.Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J].Biotechnology and Genetic Engineering Reviews,1996,13(1):19-50.
[3]
COLLINS F S,GREEN E D,GUTTMACHER A E,et al.A vision for the future of genomics research[J].Nature,2003,422(6934):835-847.
[4]
ZIMMERMANN F A,DAVIES H F S,KNOLL P P,et al.Orthotopic liver allografts in the rat:the influence of strain combination on the fate of the graft[J].Transplantation,1984,37(4):406-410.
[5]
BANDARA L R,KENNEDY S.Toxicoproteomics-a new preclinical tool[J].Drug Discovery Today,2002,7(7):411-418.
HEIJNE W H,KIENHUIS A S,VAN OMMEN B,et al.Systems toxicology:applications of toxicogenomics,transcriptomics,proteomics and metabolomics in toxicology[J].Expert Review of Proteomics,2005,2(5):767-780.
[8]
SPITSBERGEN J M,KENT M L.The state of the art of the zebrafish model for toxicology and toxicologic pathology research-advantages and current limitations[J].Toxicologic Pathology,2003,31(suppl 1):62-87.
[9]
TERAOKA H,DONG W,HIRAGA T.Zebrafish as a novel experimental model for developmental toxicology[J].Congenital Anomalies,2003,43(2):123-132.
[10]
BORTONE S A,DAVIS W P.Fish intersexuality as indicator of environmental stress[J].Bioscience,1994,44(3):165-172.
[11]
LEBLANC G A,BAIN L J.Chronic toxicity of environmental contaminants:sentinels and biomarkers[J].Environmental Health Perspectives,1997,105(Suppl 1):65-80.
[12]
WANG M H,WANG Y Y,WANG J,et al.Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury[J].Aquatic Toxicology,2011,103(3/4):129-139.
[13]
WANG M H,WANG Y Y,ZHANG L,et al.Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma)[J].Aquatic Toxicology,2013,130-131:123-131.
[14]
MARIE B,HUET H,MARIE A,et al.Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish:Insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes)[J].Aquatic Toxicology,2012,114-115:39-48.
[15]
JIN Y X,ZHANG X X,LU D Z,et al.Histopathological and proteomic analysis of hepatic tissue from adult male zebrafish exposed to 17β-estradiol[J].Environmental Toxicology and Pharmacology,2010,29(1):91-95.
[16]
ZHANG W,LIU Y,ZHANG H X,et al.Proteomic analysis of male zebrafish livers chronically exposed to perfluorononanoic acid[J].Environment International,2012,42:20-30.
[17]
TIAN L,WANG M H,LI X M,et al.Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin,brevetoxin-1[J].Aquatic Toxicology,2011,104(3/4):211-217.
[18]
HUANG Q Y,HUANG L,HUANG H Q.Proteomic analysis of methyl parathion-responsive proteins in zebrafish (Danio rerio) brain[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2011,153(1):67-74.
[19]
TIAN L,CHENG J P,CHEN X P,et al.Early developmental toxicity of saxitoxin on medaka (Oryzias melastigma) embryos[J].Toxicon,2014,77:16-25.
[20]
HONG H Z,LI D M,SHEN R,et al.Mechanisms of hexabromocyclododecanes induced developmental toxicity in marine medaka (Oryzias melastigma) embryos[J].Aquatic Toxicology,2014,152:173-185.
[21]
PONNUDURAI R P,BASAK T,AHMAD S,et al.Proteomic analysis of zebrafish (Danio rerio) embryos exposed to cyclosporine A[J].Journal of Proteomics,2012,75(3):1004-1017.
[22]
HAN Z H,WANG Q W,FU J,et al.Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate[J].Aquatic Toxicology,2014,150:175-181.
[23]
DIAMANTI-KANDARAKIS E,BOURGUIGNON J-P,GIUDICE L C,et al.Endocrine-disrupting chemicals:an Endocrine Society scientific statement[J].Endocrine Reviews,2009,30(4):293-342.
[24]
KIDD K A,BLANCHFIELD P J,MILLS K H,et al.Collapse of a fish population after exposure to a synthetic estrogen[J].Proceedings of theNational Academy of Sciences,2007,104(21):8897-8901.
[25]
FONG C C,SHI Y F,YU W K,et al.iTRAQ-based proteomic profiling of the marine medaka (Oryzias melastigma) gonad exposed to BDE-47[J].Marine Pollution Bulletin,2014,85(2):471-478.
[26]
DE WIT M,KEIL D,VAN DER VEN K,et al.An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17 α-ethinylestradiol in zebrafish (Danio rerio)[J].General and Comparative Endocrinology,2010,167(2):190-201.
[27]
GVNDEL U,KALKHOF S,ZITZKAT D,et al.Concentration-response concept in ecotoxicoproteomics:effects of different phenanthrene concentrations to the zebrafish (Danio rerio) embryo proteome[J].Ecotoxicology and Environmental Safety,2012,76:11-22.
[28]
XIONG X P,DONG C F,XU X P,et al.Proteomic analysis of zebrafish (Danio rerio) infected with infectious spleen and kidney necrosis virus[J].Developmental & Comparative Immunology,2011,35(4):431-440.
没有找到本文相关文献
The requested resource (/CN/abstract/http:/hyhjkx.nmemc.org.cn/html/bottom_cn.htm) is not available