[1]

张正斌. 海洋化学原理和应用[M]. 北京: 海洋出版社, 1999.

[2]

沈国英, 黄凌风, 郭 丰, 等. 海洋生态学[M]. 3版. 北京: 科学出版社, 2010.

[3]

SIGMAN D M, KARSH K L, CASCIOTTI K L. Nitrogen isotopes in the ocean[M]//STEELE J H, TUREKIAN K K, THORPE S A. Encyclopedia of Ocean Sciences. London: Academic Press, 2009.

[4] ARRIGO K R.  Marine microorganisms and global nutrient cycles[J]. Nature, 2005, 437(7057): 349-355.   doi: 10.1038/nature04159
[5] MCCARTHY J J, TAYLOR W R, TAFT J L.  Nitrogenous nutrition of the plankton in the Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences[J]. Limnology and Oceanography, 1977, 22(6): 996-1011.   doi: 10.4319/lo.1977.22.6.0996
[6] FURNAS M J.  Nitrogen dynamics in lower Narragansett Bay, Rhode Island. I. Uptake by size-fractionated phytoplankton populations[J]. Journal of Plankton Research, 1983, 5(5): 657-676.   doi: 10.1093/plankt/5.5.657
[7]

张 云. 不同类群代表性浮游植物对尿素的生理生态响应[D]. 广州: 暨南大学, 2013.

[8] FAN C, GLIBERT P M, ALEXANDER J, et al.  Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii[J]. Marine Biology, 2003, 142(5): 949-958.   doi: 10.1007/s00227-003-1017-8
[9] ZHAO Y, WANG Y, QUIGG A.  Comparison of population growth and photosynthetic apparatus changes in response to different nutrient status in a diatom and a coccolithophore[J]. Journal of Phycology, 2015, 51(5): 872-887.   doi: 10.1111/jpy.12327
[10] BRAND L E, MURPHY L S, GUILLARD R R L, et al.  Genetic variability and differentiation in the temperature niche component of the diatom Thalassiosira pseudonana[J]. Marine Biology, 1981, 62(2/3): 103-110.
[11] LE GAILLARD F, HAN K K, DAUTREVAUX M.  Caractérisation et propriétés physico-chimiques de la transcortine humaine[J]. Biochimie, 1975, 57(5): 559-568.   doi: 10.1016/S0300-9084(75)80136-2
[12]

朱 谦. 春季东海沿岸东海原甲藻藻华与环境因子和水体氮循环过程的关系研究[D]. 厦门: 厦门大学, 2018.

[13]

PARSONS T R, MAITA Y, LALLI C M. A manual of chemical and biological methods for seawater analysis[M]. Oxford: Pergamon, 1984: 184.

[14] ZHAO Y R, TANG X X, QUIGG A, et al.  The toxic mechanisms of BDE-47 to the marine diatom Thalassiosira pseudonana-a study based on multiple physiological processes[J]. Aquatic Toxicology, 2019, 212: 20-27.   doi: 10.1016/j.aquatox.2019.04.010
[15] GENTY B, BRIANTAIS J M, BAKER N R.  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 1989, 990(1): 87-92.   doi: 10.1016/S0304-4165(89)80016-9
[16]

FALKOWSKI P G, RAVEN J A. Aquatic photosynthesis[M]. Princeton: Princeton University Press, 2013.

[17] MURCHIE E H, LAWSON T.  Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. Journal of Experimental Botany, 2013, 64(13): 3983-3998.   doi: 10.1093/jxb/ert208
[18] LEVASSEUR M, THOMPSON P A, HARRISON P J.  Physiological acclimation of marine phytoplankton to different nitrogen sources[J]. Journal of Phycology, 1993, 29(5): 587-595.   doi: 10.1111/j.0022-3646.1993.00587.x
[19] HILDEBRAND M, DAHLIN K.  Nitrate transporter genes from the diatom Cylindrotheca fusiformis (Bacillariophyceae): mRNA levels controlled by nitrogen source and by the cell cycle[J]. Journal of Phycology, 2000, 36(4): 702-713.   doi: 10.1046/j.1529-8817.2000.99153.x
[20] 张清春, 于仁诚, 周名江, 等.  不同氮源对微小亚历山大藻生长和毒素产生的影响[J]. 海洋学报, 2005, 27(6): 138-145.
[21] SOLOMON C M, COLLIER J L, BERG G M, et al.  Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review[J]. Aquatic Microbial Ecology, 2010, 59: 67-88.   doi: 10.3354/ame01390
[22] GLIBERT P M, HARRISON J, HEIL C, et al.  Escalating worldwide use of urea-A global change contributing to coastal eutrophication[J]. Biogeochemistry, 2006, 77(3): 441-463.   doi: 10.1007/s10533-005-3070-5
[23] BERMAN T, CHAVA S.  Algal growth on organic compounds as nitrogen sources[J]. Journal of Plankton Research, 1999, 21(8): 1423-1437.   doi: 10.1093/plankt/21.8.1423
[24] 乔 倩, 王朝晖, 郭 鑫.  不同氮源对中肋骨条藻(Skeletonema costatum)生长的影响[J]. 生态学杂志, 2016, 35(8): 2110-2116.
[25]

乔 倩. 不同氮源对典型赤潮藻类生长的影响[D]. 广州: 暨南大学, 2016.

[26] DUGDALE R C, GOERING J J.  Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12: 196–206[J]. Limnology and Oceanography, 1967, 12(2): 196-206.   doi: 10.4319/lo.1967.12.2.0196
[27] COLLOS Y, HARRISON P J.  Acclimation and toxicity of high ammonium concentrations to unicellular algae[J]. Marine Pollution Bulletin, 2014, 80(1/2): 8-23.
[28] 蒋汉明, 高坤山.  氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响[J]. 水生生物学报, 2004, 28(5): 545-551.   doi: 10.3321/j.issn:1000-3207.2004.05.015
[29] 王培磊, 刘明河, 张学成, 等.  盐生杜氏藻对不同氮源吸收规律的比较研究[J]. 海洋水产研究, 2007, 28(6): 56-60.
[30] BERGES J A, CHARLEBOIS D O, MAUZERALL D C, et al.  Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae[J]. Plant Physiology, 1996, 110(2): 689-696.   doi: 10.1104/pp.110.2.689
[31] LATASA M, BERDALET E.  Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp[J]. Journal of Plankton Research, 1994, 16(1): 83-94.   doi: 10.1093/plankt/16.1.83