[1] 王建步, 张 杰, 陈景云, 等.  近30余年辽河口海岸线遥感变迁分析[J]. 海洋环境科学, 2015, 34(1): 86-92.
[2] 高志强, 刘向阳, 宁吉才, 等.  基于遥感的近30a中国海岸线和围填海面积变化及成因分析[J]. 农业工程学报, 2014, 30(12): 140-147.   doi: 10.3969/j.issn.1002-6819.2014.12.017
[3] 吴一全, 孟天亮, 吴诗婳.  图像阈值分割方法研究进展20年(1994–2014)[J]. 数据采集与处理, 2015, 30(1): 1-23.
[4] LU S L, WU B F, YAN N N, et al.  Water body mapping method with HJ-1A/B satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3): 428-434.   doi: 10.1016/j.jag.2010.09.006
[5] 顾 智, 贾培宏, 李功成, 等.  基于Canny算子的海南陵水双潟湖岸线提取技术[J]. 第四纪研究, 2016, 36(1): 113-120.   doi: 10.11928/j.issn.1001-7410.2016.11
[6] 庄翠蓉.  厦门海岸线遥感动态监测研究[J]. 海洋地质动态, 2009, 25(4): 13-17.   doi: 10.3969/j.issn.1009-2722.2009.04.003
[7] 李秀梅, 袁承志, 李月洋.  渤海湾海岸带遥感监测及时空变化[J]. 国土资源遥感, 2013, 25(2): 156-163.
[8]

QU G Z, YU Q Z, WANG Y F. An improved method for SAR image coastline detection based on despeckling and SVM[C]//IET International Radar Conference 2013. Xi'an: IET, 2013: 1-6.

[9]

TOCHAMNANVIT T, MUTTITANON W. Investigation of coastline changes in three provinces of Thailand using remote sensing[C]//ISPRS Technical Commission VIII Mid-Term Symposium 2014. Hyderabad: ISPRS, 2014: 1079–1083.

[10]

GE X Z, SUN X L, LIU Z Q. Object-oriented coastline classification and extraction from remote sensing imagery[C]//Remote sensing of the environment: 18th National Symposium on Remote Sensing of China. Wuhan: SPIE, 2014, 9158: 91580M.

[11] 许 玥, 冯梦如, 皮家甜, 等.  基于深度学习模型的遥感图像分割方法[J]. 计算机应用, 2019, 39(10): 2905-2914.
[12] 李越帅, 郑宏伟, 罗格平, 等.  集成U-Net方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用, 2019, 34(5): 939-949.
[13] 曹 洁, 罗菊香, 李晓旭.  融入类别信息的图像标注概率主题模型[J]. 计算机工程与应用, 2017, 53(10): 187-192.   doi: 10.3778/j.issn.1002-8331.1512-0234
[14]

CHEN J X, YANG L, ZHANG Y Z, et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3044-3052.

[15] 宋廷强, 李继旭, 张信耶.  基于深度学习的高分辨率遥感图像建筑物识别[J]. 计算机工程与应用, 2020, 56(8): 26-34.   doi: 10.3778/j.issn.1002-8331.1910-0211
[16]

IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lile, France: IMLS, 2015, 37: 448-456.

[17] 苏健民, 杨岚心, 景维鹏.  基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7): 207-213.   doi: 10.3778/j.issn.1002-8331.1806-0024
[18] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.  DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.   doi: 10.1109/TPAMI.2017.2699184
[19] 田德政, 王常颖, 韩园峰, 等.  模拟涨潮的复杂海岸类型岸线自动提取方法[J]. 海洋环境科学, 2020, 39(1): 153-161.   doi: 10.12111/j.mes20200122
[20]

ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529-1537.

[21] 丁小松, 单秀娟, 陈云龙, 等.  基于数字化海岸分析系统(DSAS)的海岸线变迁速率研究: 以黄河三角洲和莱州湾海岸线为例[J]. 海洋通报, 2018, 37(5): 565-575.   doi: 10.11840/j.issn.1001-6392.2018.05.010
[22]

LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.

[23] 吴一全, 刘忠林.  遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4): 582-602.