[1] ARAKAKI A, SHIBUSAWA M, HOSOKAWA M, et al.  Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification[J]. Applied and Environmental Microbiology, 2010, 76(5): 1480-1485.   doi: 10.1128/AEM.02124-09
[2] GANS J, WOLINSKY M, DUNBAR J.  Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309(5739): 1378-1390.
[3] 李曙光, 皮昀丹, ZHANG C L.  古菌研究及其展望[J]. 中国科学技术大学学报, 2007, 37(8): 830-838.   doi: 10.3969/j.issn.0253-2778.2007.08.004
[4] LIPP J S, MORONO Y, INAGAKI F, et al.  Significant contribution of Archaea to extant biomass in marine subsurface sediments[J]. Nature, 2008, 454(7207): 991-994.   doi: 10.1038/nature07174
[5] 邓 霏.  古菌研究进展[J]. 安徽农业科学, 2018, 46(28): 11-14.   doi: 10.3969/j.issn.0517-6611.2018.28.004
[6] SWAN B K, EHRHARDT C J, REIFEL K M, et al.  Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California Hypersaline Lake, the Salton Sea[J]. Applied and Environmental Microbiology, 2010, 76(3): 757-768.   doi: 10.1128/AEM.02409-09
[7] 张慧珍, 常永凯, 陈泉睿, 等.  辽河口沉积物中古菌和细菌群落结构分析[J]. 海洋学报, 2018, 40(6): 113-130.   doi: 10.3969/j.issn.0253-4193.2018.06.011
[8] 陈明明, 王少璞, 韦 梦, 等.  象山港网箱养殖区沉积物的古菌空间分布[J]. 生态学报, 2014, 34(14): 4099-4106.
[9] 黄 备, 邵君波, 周 斌, 等.  椒江口海域沉积物微生物群落及其对环境因子的响应[J]. 中国环境监测, 2017, 33(6): 87-94.
[10] ANA C C, DANIEL F R, ADELAIDE A, et al.  Denaturing gradient Gels electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples[J]. Appl Environ microbio, 2012, 78(16): 5520-5528.   doi: 10.1128/AEM.00386-12
[11] KARNER M B, DELONG E F, KARL D M.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409(6819): 507-510.   doi: 10.1038/35054051
[12] WEBSTER G, O’SULLIVAN L A, MENG Y Y, et al.  Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments[J]. FEMS Microbiology Ecology, 2015, 91(2): 1-18.
[13] KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543-546.   doi: 10.1038/nature03911
[14] PESTER M, RATTEI T, FLECHL S, et al.  amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2): 525-539.   doi: 10.1111/j.1462-2920.2011.02666.x
[15]

于少兰. 黄东海泥质区沉积物氨氧化古菌和氨氧化细菌amoA基因的空间分布[D]. 青岛: 中国海洋大学, 2015: 55–135.

[16] CAO H L, HONG Y G, LI M, et al.  Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea[J]. Applied Microbiology and Biotechnology, 2012, 94(1): 247-259.   doi: 10.1007/s00253-011-3636-1
[17] 龚 骏, 宋延静, 张晓黎.  海岸带沉积物中氮循环功能微生物多样性[J]. 生物多样性, 2013, 21(4): 434-444.
[18] SHEIK C S, MITCHELL T W, RIZVI F Z, et al.  Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure[J]. PLoS One, 2012, 7(6): e40059-.   doi: 10.1371/journal.pone.0040059
[19] CORNALL A, ROSE A, STRETEN C, et al.  Molecular screening of microbial communities for candidate indicators of multiple metal impacts in marine sediments from northern Australia[J]. Environmental Toxicology and Chemistry, 2016, 35(2): 468-484.   doi: 10.1002/etc.3205
[20] TOES A C M, FINKE N, KUENEN J G, et al.  Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(3): 372-385.   doi: 10.1007/s00244-008-9135-4