[1] MCLELLAN S L, HUSE S M, MUELLER-SPITZ S R, et al.  Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent[J]. Environmental Microbiology, 2010, 12(2): 378-392.   doi: 10.1111/j.1462-2920.2009.02075.x
[2]

国家海洋局. 中国海洋生态环境状况公报[R]. 北京: 国家海洋局, 2018.

[3] JUDA L.  The European Union and the marine strategy framework directive: continuing the development of European ocean use management[J]. Ocean Development and International Law, 2010, 41(1): 34-54.   doi: 10.1080/00908320903285463
[4] STEWART J R, GAST R J, FUJIOKA R S, et al.  The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environmental Health, 2008, 7(S2): S3-.
[5] 邬明权, 牛 铮, 高 帅, 等.  渤海陆源入海排污口的多尺度遥感监测分析[J]. 地球信息科学学报, 2012, 14(3): 405-410.
[6] HUGHES K A, THOMPSON A.  Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers[J]. Environmental Pollution, 2004, 127(3): 315-321.   doi: 10.1016/j.envpol.2003.09.004
[7] WALTERS S P, YAMAHARA K M, BOEHM A B.  Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters[J]. Water Research, 2009, 43(19): 4929-4939.   doi: 10.1016/j.watres.2009.05.047
[8] TAMAKI H, ZHANG R, ANGLY F E, et al.  Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate[J]. Environmental Microbiology, 2012, 14(2): 441-452.   doi: 10.1111/j.1462-2920.2011.02630.x
[9] BARBARA A. METHÉ, NELSON K E, POP M, et al.  A framework for human microbiome research[J]. Nature, 2012, 486(7402): 215-221.   doi: 10.1038/nature11209
[10] YE L, ZHANG T.  Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing[J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2681-2690.   doi: 10.1007/s00253-012-4082-4
[11] SENDER R, FUCHS S, MILO R.  Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biology, 2016, 14(8): e1002533-.   doi: 10.1371/journal.pbio.1002533
[12] RAES J, BORK P.  Molecular ecosystems biology: towards an understanding of community function[J]. Nature Reviews Microbiology, 2008, 6(9): 693-699.   doi: 10.1038/nrmicro1935
[13] WANG X H, HU M, XIA Y, et al.  Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China[J]. Applied and Environmental Microbiology, 2012, 78(19): 7042-7047.   doi: 10.1128/AEM.01617-12
[14] HU M, WANG X H, WEN X H, et al.  Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012, 117: 72-79.   doi: 10.1016/j.biortech.2012.04.061
[15] 徐爱玲, 任 杰, 宋志文, 等.  污水处理厂尾水细菌群落结构分析[J]. 环境科学, 2014, 35(9): 3473-3479.
[16] 杨文新, 樊景凤, 周 君, 等.  大连沿海排污口及邻近水域细菌动态分析[J]. 海洋与湖沼, 2013, 44(5): 1249-1256.
[17] SHANKS O C, NEWTON R J, KELTY C A, et al.  Comparison of the microbial community structures of untreated wastewaters from different geographic locales[J]. Applied and Environmental Microbiology, 2013, 79(9): 2906-2913.   doi: 10.1128/AEM.03448-12
[18] 刘 霜, 李永霞, 刘旭东, 等.  青岛陆源排污口邻近海域异养细菌的组成与分布[J]. 渔业科学进展, 2014, 35(6): 23-29.   doi: 10.11758/yykxjz.20140604
[19]

杨雪辰, 王继华. 污水厂尾水中微生物群落结构多样性研究[C]//水资源生态保护与水污染控制研讨会论文集, 哈尔滨: 中国环境科学学会, 2013: 578–582.

[20] 刘 霜, 李永霞, 刘旭东, 等.  渤海排污口邻近海域异养细菌的组成与分布[J]. 环境监测管理与技术, 2014, 26(1): 22-25.   doi: 10.3969/j.issn.1006-2009.2014.01.008
[21]

郭明月. 基于微生物群落结构和病原菌分布的尾水棑海安全研究[D]. 青岛: 青岛理工大学, 2016.

[22] TEODORO A C, DULEBA W, GUBITOSO S, et al.  Analysis of foraminifera assemblages and sediment geochemical properties to characterise the environment near Araçá and Saco da Capela domestic sewage submarine outfalls of Sao Sebastião Channel, São Paulo State, Brazil[J]. Marine Pollution Bulletin, 2010, 60(4): 536-553.   doi: 10.1016/j.marpolbul.2009.11.011
[23] DESPLAND L M, VANCOV T, ARAGNO M, et al.  Diversity of microbial communities in an attached-growth system using BauxsolTM pellets for wastewater treatment[J]. Science of the Total Environment, 2012, 433: 383-389.   doi: 10.1016/j.scitotenv.2012.06.079
[24] YU J, SEON J, PARK Y, et al.  Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment[J]. Bioresource Technology, 2012, 117: 172-179.   doi: 10.1016/j.biortech.2012.04.078
[25] WANG Z H, YANG J Q, ZHANG D J, et al.  Composition and structure of microbial communities associated with different domestic sewage outfalls[J]. Genetics and Molecular Research, 2014, 13(3): 7542-7552.   doi: 10.4238/2014.September.12.21
[26] EMMANUEL E, PIERRE M G, PERRODIN Y.  Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers[J]. Environment International, 2009, 35(4): 718-726.   doi: 10.1016/j.envint.2009.01.011
[27] PRADO T, SILVA D M, GUILAYN W C, et al.  Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants[J]. Water Research, 2011, 45(3): 1287-1297.   doi: 10.1016/j.watres.2010.10.012
[28] EMMANUEL E, PERRODIN Y, KECK G, et al.  Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network[J]. Journal of Hazardous Materials, 2005, 117(1): 1-11.   doi: 10.1016/j.jhazmat.2004.08.032
[29] 王世权, 王惠卿, 王宪东, 等.  污水排海设计中粪大肠菌群衰减率的测定与分析[J]. 海洋环境科学, 1992, 11(1): 28-33.
[30] KAY D, STAPLETON C M, WYER M D, et al.  Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T90 values for modelling faecal indicators in recreational waters[J]. Water Research, 2005, 39(4): 655-667.   doi: 10.1016/j.watres.2004.11.014
[31] BOKN T L, MOY F E, WALDAY M.  Improvement of the shallow water communities following reductions of industrial outlets and sewage discharge in the Hvaler estuary, Norway[J]. Hydrobiologia, 1996, 326-327(1): 297-304.   doi: 10.1007/BF00047822
[32] PACHEPSKY Y A, BLAUSTEIN R A, WHELAN G, et al.  Comparing temperature effects on Escherichia coli, Salmonella, and Enterococcus survival in surface waters[J]. Letters in Applied Microbiology, 2014, 59(3): 278-283.   doi: 10.1111/lam.12272
[33] JIMÉNEZ B, CHÁVEZ A, MAYA C, et al.  Removal of microorganisms in different stages of wastewater treatment for Mexico City[J]. Water Science and Technology, 2001, 43(10): 155-162.   doi: 10.2166/wst.2001.0607
[34] 王中华, 徐茂琴, 谢 利, 等.  宁波沿海陆源排污口拟杆菌(Bacteroidetes)分布的特点[J]. 海洋与湖沼, 2014, 45(5): 1030-1036.   doi: 10.11693/hyhz20140600165
[35] WETZ J J, BLACKWOOD A D, FRIES J S, et al.  Quantification of Vibrio vulnificus in an estuarine environment: a multi-year analysis using QPCR[J]. Estuaries and Coasts, 2014, 37(2): 421-435.   doi: 10.1007/s12237-013-9682-4
[36] BARRIL P A, FUMIAN T M, PREZ V E, et al.  Rotavirus seasonality in urban sewage from Argentina: effect of meteorological variables on the viral load and the genetic diversity[J]. Environmental Research, 2015, 138: 409-415.   doi: 10.1016/j.envres.2015.03.004
[37] EICHMILLER J J, HICKS R E, SADOWSKY M J.  Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent[J]. Environmental Science and Technology, 2013, 47(7): 3395-3402.   doi: 10.1021/es305116c
[38] STRAMSKI D, KIEFER D A.  Light scattering by microorganisms in the open ocean[J]. Progress in Oceanography, 1991, 28(4): 343-383.   doi: 10.1016/0079-6611(91)90032-H
[39] WALTERS S P, FIELD K G.  Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms[J]. Environmental Microbiology, 2009, 11(6): 1410-1421.   doi: 10.1111/j.1462-2920.2009.01868.x
[40] SENGER H.  The effect of blue light on plants and microorganisms[J]. Photochemistry and Photobiology, 1982, 35(6): 911-920.   doi: 10.1111/j.1751-1097.1982.tb02668.x
[41] BYAPPANAHALLI M N, NEVERS M B, KORAJKIC A, et al.  Enterococci in the environment[J]. Microbiology and Molecular Biology Reviews, 2012, 76(4): 685-706.   doi: 10.1128/MMBR.00023-12
[42] FEITOSA R C.  Ocean outfalls as an alternative to minimizing risks to human and environmental health[J]. Ciência and Saúde Coletiva, 2017, 22(6): 2037-2048.   doi: 10.1590/1413-81232017226.15522016
[43] KORAJKIC A, MCMINN B R, SHANKS O C, et al.  Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi River[J]. Applied and Environmental Microbiology, 2014, 80(13): 3952-3961.   doi: 10.1128/AEM.00388-14
[44] GREEN H C, SHANKS O C, SIVAGANESAN M, et al.  Differential decay of human faecal Bacteroides in marine and freshwater[J]. Environmental Microbiology, 2011, 13(12): 3235-3249.   doi: 10.1111/j.1462-2920.2011.02549.x
[45] HASHIM A, HAJJAJ M.  Impact of desalination plants fluid effluents on the integrity of seawater, with the Arabian Gulf in perspective[J]. Desalination, 2005, 182(1-3): 373-393.   doi: 10.1016/j.desal.2005.04.020
[46] JEANNEAU L, SOLECKI O, WÉRY N, et al.  Relative decay of fecal indicator bacteria and human-associated markers: a microcosm study simulating wastewater input into seawater and freshwater[J]. Environmental Science and Technology, 2012, 46(4): 2375-2382.   doi: 10.1021/es203019y
[47] MATTIOLI M C, SASSOUBRE L M, RUSSELL T L, et al.  Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters[J]. Water Research, 2017, 108: 106-114.   doi: 10.1016/j.watres.2016.10.066
[48] OKABE S, SHIMAZU Y.  Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity[J]. Applied Microbiology and Biotechnology, 2007, 76(4): 935-944.   doi: 10.1007/s00253-007-1048-z
[49] OUARDANI I, MANSO C F, AOUNI M, et al.  Efficiency of hepatitis A virus removal in six sewage treatment plants from central Tunisia[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10759-10769.   doi: 10.1007/s00253-015-6902-9
[50] SCHULZ C J, CHILDERS G W.  Bacteroidales diversity and decay in response to variations in temperature and salinity[J]. Applied and Environmental Microbiology, 2011, 77(8): 2563-2572.   doi: 10.1128/AEM.01473-10
[51] ELLIOTT J K, SPEAR E, WYLLIE‐ECHEVERRIA S.  Mats of Beggiatoa bacteria reveal that organic pollution from lumber mills inhibits growth of Zostera marina[J]. Marine Ecology, 2006, 27(4): 372-380.   doi: 10.1111/j.1439-0485.2006.00100.x
[52] FENCHEL T, BERNARD C.  Mats of colourless sulphur bacteria. I. Major microbial processes[J]. Marine Ecology Progress Series, 1995, 128: 161-170.   doi: 10.3354/meps128161
[53] CAMPBELL A M, FLEISHER J, SINIGALLIANO C, et al.  Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida[J]. Microbiology Open, 2015, 4(3): 390-408.   doi: 10.1002/mbo3.245
[54] 佟 娟, 魏源送.  污水处理厂削减耐药菌与抗性基因的研究进展[J]. 环境科学学报, 2012, 32(11): 2650-2659.
[55] HUANG K L, TANG J Y, ZHANG X X, et al.  A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing[J]. International Journal of Molecular Sciences, 2014, 15(6): 10083-10100.   doi: 10.3390/ijms150610083
[56] HENDRIKSEN R S, MUNK P, NJAGE P, et al.  Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage[J]. Nature Communications, 2019, 10(1): 1124-.   doi: 10.1038/s41467-019-08853-3
[57] AKIBA M, SENBA H, OTAGIRI H, et al.  Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India[J]. Ecotoxicology and Environmental Safety, 2015, 115: 203-208.   doi: 10.1016/j.ecoenv.2015.02.018
[58] 王学昌, 娄安刚, 郑丙辉, 等.  不同方式污水排海对海水水质的影响[J]. 海洋环境科学, 2002, 21(3): 57-60.   doi: 10.3969/j.issn.1007-6336.2002.03.013
[59] 董文涛.  海洋生态环境现状及治理对策[J]. 中国科技信息, 2014, 17: 60-61.   doi: 10.3969/j.issn.1001-8972.2014.10.015
[60] 狄 龙, 马 骏.  台州市入海排污口粪大肠菌群调查[J]. 农业与技术, 2012, 32(4): 160-.   doi: 10.3969/j.issn.1671-962X.2012.04.127
[61] 张微微, 王菊英, 王 燕, 等.  海水浴场水质监测与评价研究进展[J]. 海洋开发与管理, 2014, 31(7): 99-104.   doi: 10.3969/j.issn.1005-9857.2014.07.021
[62] 李文雯, 刘克明, 王 娜, 等.  2016年天津主要陆源入海排污口排污状况综合评价[J]. 河北渔业, 2019, (9): 43-50.
[63]

World Health Organization. Addendum to the WHO guidelines for safe recreational water environments, Volume 1, Coastal and fresh waters: list of agreed updates[R]. Geneva, Switzerland: World Health Organization, 2009.

[64]

US Environmental Protection Agency. Recreational water quality criteria[R]. Washington, DC: Office of water, US Environmental Protection Agency, 2012.

[65] ROTH F, LESSA G C, WILD C, et al.  Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)[J]. Marine Pollution Bulletin, 2016, 106(1-2): 43-48.   doi: 10.1016/j.marpolbul.2016.03.048
[66] 黄德铭, 刘晓收, 林明仙, 等.  污水排海对小型底栖生物丰度和生物量的影响[J]. 应用生态学报, 2014, 25(10): 3023-3031.
[67] 海洋生态系围隔实验组.  工业区排污口沉积物对海洋浮游生物生态系的影响[J]. 海洋学报, 1989, 11(1): 79-84.
[68] 于 潇, 刘晓收.  青岛汇泉湾排污口附近大型底栖动物的群落结构和多样性[J]. 应用与环境生物学报, 2017, (01): 17-22.
[69] XU J, LEE J H W, YIN K D, et al.  Environmental response to sewage treatment strategies: Hong Kong’s experience in long term water quality monitoring[J]. Marine Pollution Bulletin, 2011, 62(11): 2275-2287.   doi: 10.1016/j.marpolbul.2011.07.020
[70]

BLANSHARD A. Impact of Pollutants on Coastal and Benthic Marine Communities[M].Ecological Impacts of Toxic Chemical. 2011.

[71] BRAKE F, KIERMEIER A, ROSS T, et al.  Spatial and temporal distribution of norovirus and E. coli in sydney rock oysters following a sewage overflow into an estuary[J]. Food and Environmental Virology, 2018, 10(1): 7-15.   doi: 10.1007/s12560-017-9313-5
[72] STARK J S, CORBETT P A, DUNSHEA G, et al.  The environmental impact of sewage and wastewater outfalls in Antarctica: an example from Davis station, East Antarctica[J]. Water Research, 2016, 105: 602-614.   doi: 10.1016/j.watres.2016.09.026
[73] STARK J S, BRIDGEN P, DUNSHEA G, et al.  Dispersal and dilution of wastewater from an ocean outfall at Davis Station, Antarctica, and resulting environmental contamination[J]. Chemosphere, 2016, 152: 142-157.   doi: 10.1016/j.chemosphere.2016.02.053
[74] CONLAN K E, KIM S L, LENIHAN H S, et al.  Benthic changes during 10 years of organic enrichment by McMurdo Station, Antarctica[J]. Marine Pollution Bulletin, 2004, 49(1-2): 43-60.   doi: 10.1016/j.marpolbul.2004.01.007