[1] GU J, HU C F, KUANG C P, et al.  A water quality model applied for the rivers into the Qinhuangdao coastal water in the Bohai Sea, China[J]. Journal of Hydrodynamics, Ser. B, 2016, 28(5): 905-913.   doi: 10.1016/S1001-6058(16)60691-1
[2] GAI Y Y, YU D F, ZHOU Y, et al.  An improved model for chlorophyll-a concentration retrieval in coastal waters based on UAV-borne hyperspectral imagery: a case study in Qingdao, China[J]. Water, 2020, 12(10): 2769-.   doi: 10.3390/w12102769
[3] 屠建波, 陈燕珍, 万萌萌, 等.  2009–2018年天津近岸海域水质状况及变化趋势分析[J]. 海洋环境科学, 2021, 40(6): 873-879.   doi: 10.12111/j.mes.2021-x-0094
[4] BAI S Y, GAO J X, SUN D Y, et al.  Monitoring water transparency in shallow and eutrophic lake waters based on GOCI observations[J]. Remote Sensing, 2020, 12(1): 163-.   doi: 10.3390/rs12010163
[5] 贾后磊, 苏 文, 黄华梅, 等.  海岸带和内陆水体透明度动态变化特征及其主导影响因素[J]. 光学学报, 2018, 38(3): 0301001-.
[6] ZHOU Y, YU D F, YANG Q, et al.  Variations of water transparency and impact factors in the Bohai and Yellow Seas from satellite observations[J]. Remote Sensing, 2021, 13(3): 514-.   doi: 10.3390/rs13030514
[7] 叶 晗, 史玥双, 梁涵玮, 等.  南黄海透明度的时空分异特征及影响因素分析[J]. 海洋学报, 2022, 44(3): 128-136.
[8] CHAM D D, SON N T, NGUYEN M Q, et al.  An analysis of shoreline changes using combined multitemporal remote sensing and digital evaluation model[J]. Civil Engineering Journal, 2020, 6(1): 1-10.   doi: 10.28991/cej-2020-03091448
[9] HUOVINEN P, RAMÍREZ J, CAPUTO L, et al.  Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile[J]. Science of the Total Environment, 2019, 679: 196-208.   doi: 10.1016/j.scitotenv.2019.04.367
[10] GONG G C, WEN Y H, WANG B W, et al.  Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(6/7): 1219-1236.
[11] SHI W, WANG M H.  Satellite views of the Bohai Sea, Yellow Sea, and East China Sea[J]. Progress in Oceanography, 2012, 104: 30-45.   doi: 10.1016/j.pocean.2012.05.001
[12] 何贤强, 潘德炉, 黄二辉, 等.  中国海透明度卫星遥感监测[J]. 中国工程科学, 2004, 6(9): 33-37.   doi: 10.3969/j.issn.1009-1742.2004.09.007
[13] LEE Z, SHANG S L, HU C M, et al.  Secchi disk depth: A new theory and mechanistic model for underwater visibility[J]. Remote Sensing of Environment, 2015, 169: 139-149.   doi: 10.1016/j.rse.2015.08.002
[14] MAO Y, WANG S Q, QIU Z F, et al.  Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea[J]. Optics Express, 2018, 26(9): 12191-12209.   doi: 10.1364/OE.26.012191
[15] MI B B, ZHANG Y, MEI X.  The sediment distribution characteristics and transport pattern in the eastern China seas[J]. Quaternary International, 2022, 629: 44-52.   doi: 10.1016/j.quaint.2020.11.020
[16]

纪晨旭. 基于卫星重构数据的东中国海海表温度与叶绿素浓度关系研究[D]. 南京: 南京信息工程大学, 2019.

[17]

朱 庆. 东中国海浮游植物种类遥感反演研究[D]. 上海: 华东师范大学, 2021.

[18] O'REILLY J E, MARITORENA S, MITCHELL B G, et al.  Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research:Oceans, 1998, 103(C11): 24937-24953.   doi: 10.1029/98JC02160
[19]

张 琳. 静止轨道海洋水色卫星遥感产品的真实性检验研究[D]. 杭州: 杭州师范大学, 2017.

[20] SISWANTO E, TANG J W, YAMAGUCHI H, et al.  Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 2011, 67(5): 627-650.   doi: 10.1007/s10872-011-0062-z
[21] TASSAN S.  Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12): 2369-2378.   doi: 10.1364/AO.33.002369
[22] HU Z F, PAN D L, HE X Q, et al.  Diurnal variability of turbidity fronts observed by geostationary satellite ocean color remote sensing[J]. Remote Sensing, 2016, 8(2): 147-.   doi: 10.3390/rs8020147
[23] 汪 攀, 刘毅敏.  Sen's斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6): 454-457,472.
[24] WANG S Q, LV J, NIE J W, et al.  Dynamics of euphotic zone depth in the Bohai Sea and Yellow Sea[J]. Science of the Total Environment, 2021, 751: 142270-.   doi: 10.1016/j.scitotenv.2020.142270
[25] HE X Q, PAN D L, BAI Y, et al.  Recent changes of global ocean transparency observed by SeaWiFS[J]. Continental Shelf Research, 2017, 143: 159-166.   doi: 10.1016/j.csr.2016.09.011
[26]

龙小虎. 台湾海峡中部夏季水动力情况及悬浮颗粒的分布与输运[D]. 舟山: 浙江海洋大学, 2018.

[27]

杨雪飞. 基于GOCI和数值模拟的东海近岸悬浮泥沙浓度逐时变化研究[D]. 上海: 中国科学院大学, 2016.

[28] GEYER W R, HILL P S, KINEKE G C.  The transport, transformation and dispersal of sediment by buoyant coastal flows[J]. Continental Shelf Research, 2004, 24(7/8): 927-949.
[29] 陈黄蓉, 张靖玮, 王胜强, 等.  长江口及邻近海域的浊度日变化遥感研究[J]. 光学学报, 2020, 40(5): 0501003-.
[30] CONSTANTIN S, CONSTANTINESCU Ș, DOXARAN D.  Long-term analysis of turbidity patterns in Danube Delta coastal area based on MODIS satellite data[J]. Journal of Marine Systems, 2017, 170: 10-21.   doi: 10.1016/j.jmarsys.2017.01.016
[31] LIU J P, LI A C, XU K H, et al.  Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18): 2141-2156.