[1] STEPANIYAN O V.  Effects of crude oil on major functional characteristics of macroalgae of the Barents Sea[J]. Russian Journal of Marine Biology, 2008, 34(2): 131-134.   doi: 10.1134/S1063074008020077
[2] GONZÁLEZ J J, VIÑAS L, FRANCO M A, et al.  Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill[J]. Marine Pollution Bulletin, 2006, 53(5/6/7): 250-259.
[3] HUANG Y J, JIANG Z B, ZENG J N, et al.  The chronic effects of oil pollution on marine phytoplankton in a subtropical bay, China[J]. Environmental Monitoring and Assessment, 2011, 176(1/2/3/4): 517-530.
[4]

张聿柏. 石油烃对海洋微藻的毒性效应及其机理研究[D]. 青岛: 中国海洋大学, 2013.

[5] CHAO M, SHEN X Q, LUN F X, et al.  Toxicity of fuel oil water accommodated fractions on two marine microalgae, Skeletonema costatum and Chlorela spp[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(5): 712-716.   doi: 10.1007/s00128-012-0525-y
[6] RAMADASS K, MEGHARAJ M, VENKATESWARLU K, et al.  Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3[J]. Ecotoxicology and Environmental Safety, 2017, 142: 538-543.   doi: 10.1016/j.ecoenv.2017.04.052
[7] TU Z M, LIU L T, LIN W T, et al.  Potential of using sodium bicarbonate as external carbon source to cultivate microalga in non-sterile condition[J]. Bioresource Technology, 2018, 266: 109-115.   doi: 10.1016/j.biortech.2018.06.076
[8] ABINANDAN S, SHANTHAKUMAR S.  Erratum to: evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium[J]. 3 Biotech, 2016, 6(1): 77-.   doi: 10.1007/s13205-016-0374-1
[9]

贺迎霞. 一株绿球藻对不同浓度葡萄糖的响应机制研究[D]. 太原: 山西大学, 2021.

[10] 王 曼.  浮游植物叶绿素a4种提取方法的比较[J]. 中国实用医药, 2013, 8(22): 263-264.   doi: 10.3969/j.issn.1673-7555.2013.22.202
[11] ZHAO Z Y, MA S S, LI A, et al.  Effects of trophic modes, carbon sources, and salinity on the cell growth and lipid accumulation of tropic ocean oilgae strain Desmodesmus sp. WC08[J]. Applied Biochemistry and Biotechnology, 2016, 180(3): 452-463.   doi: 10.1007/s12010-016-2109-5
[12] CLAUS S, JEZIERSKA S, VAN BOGAERT I N A.  Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane[J]. FEBS Letters, 2019, 593(13): 1508-1527.   doi: 10.1002/1873-3468.13469
[13] LIU F J, TU T X, LI S X, et al.  Relationship between plankton-based β-carotene and biodegradable adaptablity to petroleum-derived hydrocarbon[J]. Chemosphere, 2019, 237: 124430-.   doi: 10.1016/j.chemosphere.2019.124430
[14] MOKASHI K, SHETTY V, GEORGE S A, et al.  Sodium bicarbonate as inorganic carbon source for higher biomass and lipid production integrated carbon capture in Chlorella vulgaris[J]. Achievements in the Life Sciences, 2016, 10(1): 111-117.   doi: 10.1016/j.als.2016.05.011
[15]

彭文琴. 不同碳源和光照周期对三种微藻生长及油脂积累的影响[D]. 南昌: 南昌大学, 2012.

[16] ROTH M S, GALLAHER S D, WESTCOTT D J, et al.  Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis[J]. The Plant Cell, 2019, 31(3): 579-601.   doi: 10.1105/tpc.18.00742
[17] FOYER C H, NOCTOR G.  Stress‐triggered redox signalling: what's in pROSpect?[J]. Plant, Cell & Environment, 2016, 39(5): 951-964.
[18] 刘 浩, 杭雨晴, 朱帅旗, 等.  葡萄糖对三角褐指藻生长、岩藻黄素含量及相关基因表达的影响[J]. 中国药学杂志, 2016, 51(14): 1230-1234.
[19] DE JESÚS-CAMPOS D, LÓPEZ-ELÍAS J A, MEDINA-JUAREZ L Á, et al.  Chemical composition, fatty acid profile and molecular changes derived from nitrogen stress in the diatom Chaetoceros muelleri[J]. Aquaculture Reports, 2020, 16: 100281-.   doi: 10.1016/j.aqrep.2020.100281
[20]

姚敬元. 溢油对微藻脂肪酸稳定同位素组成的影响[D]. 大连: 大连海事大学, 2017.

[21] 吴华莲, 苏娇娇, 向文洲, 等.  碳酸氢钠、氯化钠和pH对菱形藻EPA累积的影响[J]. 渔业现代化, 2014, 41(3): 5-10.   doi: 10.3969/j.issn.1007-9580.2014.03.002
[22] JEGAN G, SRINIVASAN M, SENTHILKUMAR N S.  Influence of different concentrations of sodium bicarbonate on growth rate and biochemical composition of micro algae[J]. Journal of Algal Biomass Utilization, 2013, 4(4): 81-87.
[23] REGNAULT A, CHERVIN D, CHAMMAI A, et al.  Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance[J]. Phytochemistry, 1995, 40(3): 725-733.   doi: 10.1016/0031-9422(95)00268-C
[24] LIU J, HUANG J C, SUN Z, et al.  Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production[J]. Bioresource Technology, 2011, 102(1): 106-110.   doi: 10.1016/j.biortech.2010.06.017