[1] 庞艳华, 吕晓燕, 丁永生, 等.  船舶压载水外来生物入侵传播的防治[J]. 大连海事大学学报, 2007, 33(1): 10-12.   doi: 10.3969/j.issn.1006-7736.2007.01.003
[2] 陈立侨, 李云凯, 侯俊利, 等.  船舶压载水导致的生物入侵及其防治对策[J]. 华东师范大学学报: 自然科学版, 2005, (5/6): 40-48.
[3] DARLING J A, MARTINSON J, GONG Y G, et al.  Ballast water exchange and invasion risk posed by intracoastal vessel traffic: an evaluation using high throughput sequencing[J]. Environmental Science and Technology, 2018, 52(17): 9926-9936.   doi: 10.1021/acs.est.8b02108
[4] 张子龙, 李深伟, 张晓航, 等.  上海口岸入出境船舶压载水的致病微生物携带情况调查[J]. 上海海洋大学学报, 2018, 27(3): 425-430.   doi: 10.12024/jsou.20171210008
[5] ALTUG G, GURUN S, CARDAK M, et al.  The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey[J]. Marine Environmental Research, 2012, 81: 35-42.   doi: 10.1016/j.marenvres.2012.08.005
[6]

IMO. International convention on the control and management of ships' ballast water and sediments[R]. London: International Maritime Organization, 2004.

[7] 陈亚楠, 王亚炜, 魏源送, 等.  不同功能地表水体中病原微生物指示物的标准比较[J]. 环境科学学报, 2015, 35(2): 337-351.
[8] CUI Q J, HUANG Y, WANG H, et al.  Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage[J]. Environmental Pollution, 2019, 249: 24-35.   doi: 10.1016/j.envpol.2019.02.094
[9] DONG P Y, CUI Q J, FANG T T, et al.  Occurrence of antibiotic resistance genes and bacterial pathogens in water and sediment in urban recreational water[J]. Journal of Environmental Sciences, 2019, 77: 65-74.   doi: 10.1016/j.jes.2018.06.011
[10] NG C, GOH S G, SAEIDI N, et al.  Occurrence of Vibrio species, beta-lactam resistant Vibrio species, and indicator bacteria in ballast and port waters of a tropical harbor[J]. Science of the Total Environment, 2018, 610/611: 651-656.   doi: 10.1016/j.scitotenv.2017.08.099
[11]

GRASSHOFF K, KREMLING K, EHRHARDT M. Methods of seawater analysis[M]. 3rd ed. Weinheim: WILEY-VCH, 1999: 203-223.

[12] TAYLOR L H, LATHAM S M, WOOLHOUSE M E J.  Risk factors for human disease emergence[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2001, 356(1411): 983-989.   doi: 10.1098/rstb.2001.0888
[13] LI B, JU F, CAI L, et al.  Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach[J]. Environmental Science and Technology, 2015, 49(17): 10492-10502.   doi: 10.1021/acs.est.5b02345
[14] CAI L, ZHANG T.  Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique[J]. Environmental Science and Technology, 2013, 47(10): 5433-5441.   doi: 10.1021/es400275r
[15] 侯丽媛, 胡安谊, 马 英, 等.  九龙江流域潜在病原菌污染分析[J]. 环境科学, 2014, 35(5): 1742-1749.
[16] LYMPEROPOULOU D S, DOBBS F C.  Bacterial diversity in ships' ballast water, ballast-water exchange, and implications for ship-mediated dispersal of microorganisms[J]. Environmental Science and Technology, 2017, 51(4): 1962-1972.   doi: 10.1021/acs.est.6b03108
[17] LU J, ZHANG Y X, WU J.  Continental-scale spatio-temporal distribution of antibiotic resistance genes in coastal waters along coastline of China[J]. Chemosphere, 2020, 247: 125908-.   doi: 10.1016/j.chemosphere.2020.125908
[18] BRINKMEYER R.  Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing[J]. Marine Pollution Bulletin, 2016, 107(1): 277-285.   doi: 10.1016/j.marpolbul.2016.03.058
[19] MOLINA V, DRAKE L A.  Efficacy of open-ocean ballast water exchange: a review[J]. Management of Biological Invasions, 2016, 7(4): 375-388.   doi: 10.3391/mbi.2016.7.4.07