[1] GUTIERREZ T, MORRIS G, ELLIS D, et al.  Hydrocarbon-degradation and MOS-formation capabilities of the dominant bacteria enriched in sea surface oil slicks during the Deepwater Horizon oil spill[J]. Marine Pollution Bulletin, 2018, 135: 205-215.   doi: 10.1016/j.marpolbul.2018.07.027
[2] 胡建军, 金炜东, 董大勇.  基于生态事件的企业社会回应研究——以蓬莱19–3油田溢油案为例[J]. 生态经济, 2013, (1): 155-159.   doi: 10.3969/j.issn.1671-4407.2013.01.038
[3]

韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 北京: 中国科学院大学, 2017.

[4] CHEN J H, GONG Y Z, WANG S Q, et al.  To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China[J]. Science of the Total Environment, 2019, 662: 141-150.   doi: 10.1016/j.scitotenv.2019.01.150
[5] 王向前, 胡学玉, 陈窈君, 等.  生物炭及改性生物炭对水环境中重金属的吸附固定作用[J]. 环境工程, 2016, 34(12): 32-37.
[6] FENG Y, LIU S C, LIU G Z, et al.  Facile and fast removal of oil through porous carbon spheres derived from the fruit of Liquidambar formosana[J]. Chemosphere, 2017, 170: 68-74.   doi: 10.1016/j.chemosphere.2016.11.166
[7] ANGELOVA D, UZUNOV I, UZUNOVA S, et al.  Kinetics of oil and oil products adsorption by carbonized rice husks[J]. Chemical Engineering Journal, 2011, 172(1): 306-311.   doi: 10.1016/j.cej.2011.05.114
[8] WANG J L, WANG S Z.  Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022.   doi: 10.1016/j.jclepro.2019.04.282
[9] 杨巧珍, 钟金魁, 李 柳.  生物炭对多环芳烃的吸附研究进展[J]. 环境科学与管理, 2018, 43(5): 60-63.   doi: 10.3969/j.issn.1673-1212.2018.05.016
[10] PENG P, LANG Y H, WANG X M.  Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms[J]. Ecological Engineering, 2016, 90: 225-233.   doi: 10.1016/j.ecoleng.2016.01.039
[11] 王贝贝, 马艳飞, 张胜南, 等.  酸改性生物炭对柴油等温吸附的研究[J]. 石油化工, 2018, 47(10): 1103-1109.   doi: 10.3969/j.issn.1000-8144.2018.10.012
[12] LI Y C, SHAO J G, WANG X H, et al.  Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption[J]. Energy & Fuels, 2014, 28(8): 5119-5127.
[13] 张 萌, 吕耀斌, 朱一滔, 等.  腐殖酸负载对萘和1-萘酚在生物炭上吸附动力学的影响[J]. 环境化学, 2020, 39(1): 101-109.   doi: 10.7524/j.issn.0254-6108.2019081511
[14]

杜 勇. 生物炭固定化微生物去除水中苯酚的研究[D]. 重庆: 重庆大学, 2012.

[15] YAASHIKAA P R, KUMAR P S, VARJANI S J, et al.  Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants[J]. Bioresource Technology, 2019, 292: 122030-.   doi: 10.1016/j.biortech.2019.122030
[16] 王 楠, 吴 玮, 杨春光, 等.  盐酸改性松针生物炭对磺胺甲噁唑的吸附性能[J]. 环境工程学报, 2020, 14(6): 1428-1436.   doi: 10.12030/j.cjee.201908002
[17] CHAKRABORTY P, SHOW S, UR RAHMAN W, et al.  Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar[J]. Process Safety and Environmental Protection, 2019, 126: 193-204.   doi: 10.1016/j.psep.2019.04.011
[18] 刘 蕊, 李 松, 张 辉, 等.  硝酸改性生物炭对水体中阴阳离子染料吸附特性[J]. 水处理技术, 2019, 45(3): 28-34.
[19] MUKHERJEE A, ZIMMERMAN A R, HARRIS W.  Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3/4): 247-255.
[20] FU M M, MO C H, LI H, et al.  Comparison of physicochemical properties of biochars and hydrochars produced from food wastes[J]. Journal of Cleaner Production, 2019, 236: 117637-.   doi: 10.1016/j.jclepro.2019.117637
[21] XIAO X, CHEN B L, ZHU L Z.  Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science & Technology, 2014, 48(6): 3411-3419.
[22] SHAABAN A, SE S M, DIMIN M F, et al.  Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 31-39.   doi: 10.1016/j.jaap.2014.01.021
[23] 廖 路, 吴 攀, 王 兵, 等.  改性生物炭对高浓度锑废水中Sb(Ⅴ)的去除效果[J]. 环境工程学报, 2021, 15(2): 435-445.   doi: 10.12030/j.cjee.202005006
[24] RASHWAN W E, GIRGIS B S.  Adsorption capacities of activated carbons derived from rice straw and water hyacinth in the removal of organic pollutants from water[J]. Adsorption Science & Technology, 2004, 22(3): 181-194.
[25] TSAI W T, LAI C W, HSIEN K J.  Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution[J]. Journal of Colloid and Interface Science, 2003, 263(1): 29-34.   doi: 10.1016/S0021-9797(03)00213-3