Physiological and ecological response of marine coccolithophores to global climate change: a review
-
摘要:
海洋颗石藻是一类重要的浮游植物功能群,可同时进行光合作用和钙化作用,在全球海洋碳循环中起到重要作用。海洋是人类排放CO2一个重要的汇,大气CO2浓度迅速上升导致海洋酸化、升温、营养盐浓度及混合层内光照强度变化。这些复杂的环境变化与人类活动对海洋环境的其他扰动相叠加,同时作用于海洋浮游植物,对海洋颗石藻的生长施加多重压力,进而对海洋碳循环产生复杂的反馈效应。本文主要综述单一环境因子(CO2浓度、温度、营养盐及光照水平)以及全球气候变化下多重环境因子的复合作用对海洋颗石藻的生理生态学效应及其对海洋生物地球化学循环的潜在影响,并结合近年来的研究进展,分析这一热门研究领域未来的发展方向。
Abstract:Coccolithophores are one of the marine phytoplankton functional groups, playing important roles in the marine carbon cycle through both photosynthetic and calcification processes. The oceans are considered as important sink of the anthropogenic CO2. The rapid increase in atmospheric pCO2 since the industrial revolution has caused the trend of global climate change, including ocean acidification, global warming and changes in the nutrient concentrations and irradiance in the mixed layer. These complex changes in environmental conditions will affect the physiology and ecology of marine phytoplankton simultaneously, which is the so-call environmental multiple stress. The response of coccolithophores to changes in multiple environmental drivers will also have complex feedback to marine carbon cycle. This review mainly overviews the current understanding of the effects of both single environmental driver (CO2 concentration, temperature, and nutrient and irradiance levels) and the interaction of multiple environmental drivers on the physiology of coccolithophores and its implications on the marine biogeochemistry. Based on these recent research advances, the future research perspectives are also summarized.
-
颗石藻是浮游单细胞藻类,是现代海洋中钙质化微型浮游生物,属于定鞭藻门(Haptophyta)、颗石藻纲(Coccolithophyceae)[1]。颗石藻是一类重要的浮游植物功能群[2],约占海洋浮游植物碳库的20%,并可在某些高纬度海域形成卫星遥感可见的大规模水华[3-4]。颗石藻既可进行光合作用又可以进行钙化作用,大概贡献了海洋碳酸钙生产的一半[5-6],由于其钙化作用释放CO2气体改变海水的总碱度,产生的胞外颗石粒可对海雪沉降起到“压重”效应,进而影响海气CO2交换以及碳向深海的输出[7-8]。同时,颗石藻也是重要的二甲基硫(DMS)的生产者[9],DMS是云凝结核的重要组成部分,可改变云反射率,从而影响到达地表的太阳辐射并对气候调节有显著影响[10]。由于海洋颗石藻在海洋碳硫循环中的重要作用及其钙化作用对海水碳酸盐化学变化的敏感程度,近年来针对海洋颗石藻的研究已经成为海洋酸化研究中的热点问题[11-12]。观测表明,海洋环境变化已导致颗石藻在海洋中分布范围扩大[13]并伴随钙化作用的减弱[14-15]。
由于化石燃料的消耗,大气中CO2浓度已较工业革命前升高了40%,并以每年0.4%的速度继续增长[16]。海洋是一个巨大的碳储库,吸收了大部分人类排放的CO2[17],大气中CO2浓度升高可影响表层海水碳酸盐体系,引起海水pH降低、CO32−浓度下降及HCO3−浓度升高,并降低海水碳酸钙饱和度及补偿深度(carbonate compensation depth)[16],该现象被称为海洋酸化[15]。此外,CO2浓度升高也造成了其他环境因子快速变化,其温室效应已使全球平均气温较20世纪升高(0.6±0.2)℃,随之造成的海洋升温将加剧海水的层化并使混合层变浅,尤其是在大洋海域,层化加强将降低由深海向上层混合层内的营养盐输入和混合层内平均光照强度[18]。这些环境因子对颗石藻的生长、光合及钙化作用等生理过程均可起到重要的调节作用[19-20],并在全球气候变化的趋势下产生多重压力[21-22]。本文结合近年来国内外相关领域的研究进展,分别综述这些环境因子变化对海洋颗石藻的生理生态学效应及多重压力下的复合效应。
1 颗石藻对气候变化单一环境因子的生理学响应
1.1 海洋酸化
颗石藻具有效率极低的碳浓缩机制(CCM)及较低的碳酸酐酶(CA)活性[23],在现今海水CO2浓度下,该种群的光合作用并未达到饱和,与其他浮游植物相比其光合作用更容易受到碳限制[24]。因此,实验室内和自然群落现场培养实验都发现CO2浓度升高促进了该种群的生长和光合作用[25-28]。同样,由于钙化作用的主要无机碳源为HCO3−,一方面海洋酸化导致的HCO3−浓度升高可对钙化作用起到促进作用;另一方面由于海洋酸化导致海水中H+浓度升高并降低碳酸钙饱和度及削弱胞内外H+浓度稳态平衡,从而削弱和损伤其钙化作用[11, 29]。
颗石藻吸收CO2进行光合作用,通过细胞膜转运HCO3−进行钙化作用,但在CO2限制下,颗石藻可以利用HCO3−作为其光合固碳的无机碳源[18, 28-30]。海洋酸化造成的CO2升高可缓解细胞对光合作用的活性碳(HCO3−)转运的需求,此过程节约的能量可被用于细胞生长和光合作用,在某种程度上促进其生长和光合固碳作用[30-31]。这种趋势对颗石藻优势物种Emiliania huxleyi 和Geophyracapsa oceanica尤为明显[31-33],而对于其他物种,如高度钙化的Coccolithus pelagicus,CO2浓度升高对其生长影响不大[34]。
大量的模拟培养实验表明海洋酸化对颗石藻的钙化作用(即颗石粒的生成)通常有负面效应[11],但也发现酸化对钙化作用的影响具有种间甚至株间特性。当CO2浓度变化时,Calcidiscus leptoporus 的钙化作用在当今CO2浓度下最高,当CO2浓度升高或降低时皆有减弱,G. oceanica和E. huxleyi A型随着CO2浓度增加钙化作用受到削弱,而Coccolithus pelagicus的钙化速率则随CO2浓度变化保持恒定[33-34]。现场调查研究也发现,尽管总的趋势是CO2浓度升高降低了颗石藻的钙化作用,但在低pH海域仍可发现强钙化的颗石藻物种占优势[12]。
E. huxleyi是分布最广的颗石藻物种,也是海洋碳循环研究中的“模式生物”[35]。大部分早期研究发现CO2浓度升高导致其钙化速率减弱[11, 27],但也有研究发现CO2分压升高促进了其钙化作用,且不同株系的E. huxleyi有机碳和无机碳的生产以及颗石粒形态皆对海水碳酸盐体系中不同组分的变化有不同的响应[36-38]。
对造成E. huxleyi应对海洋酸化响应的株间特性原因的相关研究尚在初级阶段[29, 39]。由于颗石藻在全球海洋中的广布性,其在自然群落中的形态、生理习性及基因型存在着较大的种间及株间差异,可能是造成其株间特性的主要原因[40]。在自然海洋环境中,该物种存在5种不同的形态型(morphotype):A、B、B/C、C和R[41],不同形态型之间存在着明显的基因型上的差异[42],其中颗石粒较薄的B/C型对海洋酸化的响应可能比颗石粒较厚的A型更为敏感[43]。研究钙化作用的分子机理,对我们进一步认识这一问题有重要意义[44]。此外,其钙化作用也会受到其他环境因子的影响,如营养盐浓度、温度和光照条件等[19-20]。在不同条件下其钙化速率对CO2浓度变化的响应曲线也有所不同[31]。
1.2 温度
温度对浮游植物是至关重要的一种环境因子,影响浮游植物的代谢速率及最优生长速率。在一定的温度范围内,升温通常可以导致浮游植物细胞生长和同化速率显著升高[45],影响其基因型、表型变异、胞内化学转化和营养盐输运等过程[46]。上升至群落的角度,由于不同浮游植物种群的最优生长温度存在种间差异[47],因此某些浮游植物种群将会更受益于海水升温,同时另一部分种群将失去竞争优势,引起物种组成变化和种群演替[47]。决定海洋颗石藻在各海域分布特征的一个重要因素也是其最佳生长温度[48-50],当温度>25 ℃时,G. oceanica表现出最优生长,而在较低温度下,Coccolithus pelagicus的生长速率快,符合其对较寒冷海洋环境的适应性[49, 51]。E. huxleyi则在较大温度范围内表现出高生长速率,符合其广泛的地理分布特征[49]。
温度对颗石藻钙化作用影响的相关研究表明其对温度变化的响应模式较为复杂,尤其是不同形态型之间表现出明显差异。当温度升高时E. huxleyi R型的钙化作用较强,而在低温时,其钙化作用却受到削弱[16, 52-53]。在13 ℃下,E. huxleyi A型的钙化作用最强,但温度升高至18 ℃时,其钙化速率降低[54-55]。同样,在较高水温下,颗石藻冷水物种 C. pelagicus 的钙化作用降低[56]。
随着人类活动导致的大气中CO2浓度升高而引起的全球变暖现象逐渐加剧,表层海水升温也将对自然水体中的颗石藻产生相应的生态学效应。卫星遥感观测数据已经发现近年来颗石藻在全球海域中的分布出现了向极地海域扩张的趋势,且海水温度变化对颗石藻自然种群分布的影响可能比海洋酸化对其影响更为显著[13]。此外,气候变化导致风场变化和极端天气出现的频次升高,因而引起表层海水温度波动幅度及频率也发生改变[57],这也会对颗石藻的生理生态产生更加复杂的影响[58]。
1.3 营养盐浓度和结构
营养盐浓度和结构同样是控制浮游植物生长和分布的重要因子。比起硅藻和甲藻,颗石藻具有高效的营养盐吸收能力,其生长的营养盐半饱和常数往往较低,有些物种还可以吸收利用有机态营养盐,因此在营养盐浓度低的条件下有较强的竞争性[54, 59],可贡献寡营养海域有机碳生产的20%以上[60]。营养盐限制也是引发颗石藻在较高纬度海域产生大规模水华的重要因素,如北大西洋春季颗石藻水华通常发生在硅藻水华之后,此时水体中的营养盐被消耗到无法支撑粒径较大的浮游植物生长,从而导致颗石藻成为优势种。有模型研究表明较低的磷酸盐浓度和充足的硝酸盐供给(N/P>20)是引发颗石藻水华的理想条件[61],但也有现场模拟实验表明高N/P不是其水华形成的必要条件[62]。
颗石藻是单细胞生物,其细胞分裂包括G1、S(DNA合成)、G2和M(有丝分裂)4个阶段。当营养盐限制生长时,细胞处于G1期的时间延长,这也是钙化作用的初级阶段,因此营养盐限制可促进其钙化作用[63]。综合实验室内模拟培养的结果来看,与营养盐充足条件相比,颗石藻主要优势物种的钙化作用在P限制和N限制条件下可分别增强37%和25%[32]。与N限制相比,P限制对颗石粒钙化的促进更强,不仅增大单位细胞的钙含量而且可增加其颗石粒数量[50, 63]。随着表层海水变暖引起的海水分层加剧也将限制真光层中的营养盐输入并加剧营养盐限制[64-65],并可潜在增强颗石藻钙化作用。
1.4 光照
光照是控制颗石藻光合和钙化作用的重要能量来源。根据大量的颗石藻自然群落观测数据可知,较高的光照强度是引起颗石藻水华的重要环境因素,其大规模水华通常发生在浅层水体及光照强度较高的季节[66],其发生的最低光强范围一般为25~150 μmol/(m2·s)[3]。与其他浮游植物不同,由于其胞外颗石粒的覆盖和保护作用,颗石藻在非常高[> 1700 μmol/(m2·s)]的光照强度下也不会表现出光抑制,其生长和光合作用的饱和光强远远高于硅藻和甲藻[67]。
由于钙化作用同样需要能量,因此颗石藻颗石粒的生产也依赖于光照强度。尽管许多研究已经观察到随光照强度的增强,颗石藻的钙化作用也随之增加[26, 60, 68-69],但也有一些研究得到了相反的结果[27, 70],当光强从50 μmol/(m2·s)升高至400 μmol/(m2·s)时,E. huxleyi单位细胞无机碳含量反而降低,这主要是由于钙化作用的饱和光强低于光合作用饱和光强引起的[27]。不同颗石藻物种中的颗石粒的功能也可造成光照强度对钙化作用影响的种间特性。例如,对于下透光层物种Florisphaera profunda,颗石粒可能有助于其在弱光环境下对光进行聚焦[71]。当暴露在强光照强度下,钙化株系 E. huxleyi 的生长速率比非钙化株系快3.5倍[72]。因此,不同颗石藻物种或形态型的生长及钙化作用可能具有不同的饱和光强,而某些颗石藻钙化作用甚至可能完全不受高光强抑制。
2 全球变化多重压力下的颗石藻生理学响应
在全球气候变化的趋势下,以上多种环境因子往往会同时变化而共同作用于颗石藻的生理及生态学过程,产生不同的更加复杂的交互影响效应,即叠加、协同和拮抗作用[73](图1)。
温度和光强均可调节颗石藻的光合及钙化作用对海水中CO2浓度变化的响应,升温和CO2浓度升高的协同作用显著降低了以E. huxleyi为优势物种的北大西洋春季水华颗石藻群落的钙化速率,而在单独升高CO2浓度的条件下并未观测到此趋势[74]。室内单种培养研究则进一步发现,在不同温度条件下, E. huxleyi 的生长、光合及钙化速率应对CO2浓度变化的响应曲线及其最优浓度有所不同[31]。升温和CO2升高的协同作用也显著促进了颗石藻在浮游植物种群中的相对丰度[74],这与针对大西洋浮游植物自然种群的长期观测结果相一致,已发现气候变化造成过去20年间该海域颗石藻种群丰度显著上升,并伴随着硅藻种群丰度的降低[75]。颗石藻的钙化作用通常在饱和光强下才会对CO2浓度变化产生较显著的响应 [26-27]。实验室三因素正交实验发现E. huxleyi CCMP371的光合作用显著地受到温度和CO2浓度变化的交互影响,光照和CO2对其钙化作用有显著交互作用,三因子的交互作用对其生长速率也产生了显著影响[27]。
图 1 其他环境因子变化与海洋酸化(至20世纪末水平)对颗石藻Emiliania huxleyi生理学过程的双因子及多因子交互效应概念模型(修改自文献[73])Fig. 1 Conceptual model of two-way factorial and multi-factorial effects of ocean acidification and other environmental conditions projected for the end of this century on the physiological rate processes of coccolithophore Emiliania huxleyi (adapted from reference[73])营养盐水平也可调节颗石藻对海洋酸化的生理响应。对颗石藻E. huxleyi的长期培养实验结果表明:氮源和CO2浓度变化对其钙化作用起到了交互效应,只有在硝态氮作为氮源的条件下其钙化作用才会受到酸化的影响[76]。在不同的营养盐条件下(N或P限制),E. huxleyi胞内的有机碳及无机碳含量对海水碳酸盐化学变化的响应也有所不同[77],氮限制和酸化的协同作用显著降低了E. huxleyi的胞内无机碳与有机碳的比值及其沉降速率[78]。
尽管越来越多的研究结果凸显了多重环境因子的交互效应不容忽视,但在实验室及现场模拟培养实验的实际操作过程中,传统的多因子正交实验往往会产生数量巨大的实验处理组别,严重影响实验开展的可行性[49]。已有研究表明,多重环境因子对颗石藻的生理效应可能与单一因子有一定的相关性[19-20, 73]。因此,有必要对相应的实验设计有针对性地进行简化,比如从多重环境中厘清并选取对颗石藻生理过程有较重要影响的因子以及具有环境相关性的处理水平等[49]。
3 国内研究进展
国内针对颗石藻的相关研究主要集中在颗石藻在中国近海的分布、生物多样性以及其分布与环境因子之间的关系的相关调查研究[79-80]。由于颗石藻的生长对营养盐需求不高,其在营养盐浓度较高的中国近海总体丰度不高,不能生成如北大西洋海域规律性的大规模水华,在中国近海常见于南海海盆区等寡营养海域[81]。近年来,一些相关的实验室及现场培养实验也陆续开展,对酸化与其他环境因子如营养盐限制[78]、升温、光照(包括紫外辐射)及低氧等的交互效应的相关研究[22]已有报道。
4 研究展望
综上所述,目前对全球气候变化下的海洋颗石藻生理生态学已有大量的前期研究积累,但也有很多相关科学问题亟待补充和深入研究。实验室内模拟培养实验结果应与自然水体中的长期观测手段互相结合、互相补充。前期大量针对颗石藻的研究主要基于实验室内单一物种培养实验结果,未来研究应拓展至浮游植物种群、群落及生态系统水平,从短期驯化性实验上升至长期进化水平适应性培养实验。此外,相关的模型研究也应该将气候变化下多重环境因子的复杂交互效应考虑在内,以期更加准确地预测在未来变化的海洋环境中颗石藻这种重要的海洋浮游植物功能群的响应以及由此带来的对海洋碳循环的深远影响。
-
图 1 其他环境因子变化与海洋酸化(至20世纪末水平)对颗石藻Emiliania huxleyi生理学过程的双因子及多因子交互效应概念模型(修改自文献[73])
Fig. 1. Conceptual model of two-way factorial and multi-factorial effects of ocean acidification and other environmental conditions projected for the end of this century on the physiological rate processes of coccolithophore Emiliania huxleyi (adapted from reference[73])
-
[1] SILVA P C, THRONDSEN J, EIKREM W. Revisiting the nomenclature of haptophytes[J]. Phycologia, 2007, 46(4): 471-475. doi: 10.2216/07-22.1
[2] 张 健, 李佳芮, 陶以军, 等. 颗石藻类群及其生态功能介绍[J]. 生态科学, 2017, 36(4): 217-225, 243. [3] IGLESIAS-RODRÍGUEZ M D, BROWN C W, DONEY S C, et al. Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids[J]. Global Biogeochemical Cycles, 2002, 16(4): 1100.
[4] BALCH W, DRAPEAU D, BOWLER B, et al. Prediction of pelagic calcification rates using satellite measurements[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(5/6/7): 478-495.
[5] BROECKER W, CLARK E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments[J]. Paleoceanography, 2009, 24(3): PA3205.
[6] SCHIEBEL R. Planktic foraminiferal sedimentation and the marine calcite budget[J]. Global Biogeochemical Cycles, 2002, 16(4): 1065.
[7] KLAAS C, ARCHER D E. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio[J]. Global Biogeochemical Cycles, 2002, 16(4): 1116.
[8] FINDLAY H S, CALOSI P, CRAWFURD K. Determinants of the PIC: POC response in the coccolithophore Emiliania huxleyi under future ocean acidification scenarios[J]. Limnology and Oceanography, 2011, 56(3): 1168-1178. doi: 10.4319/lo.2011.56.3.1168
[9] MALIN G, STEINKE M. Dimethyl sulfide production: what is the contribution of the coccolithophores?[M]//THIERSTEIN H R, YOUNG J R. Coccolithophores. Berlin, Heidelberg: Springer, 2004: 127-164.
[10] 芮晓庆, 刘传联, 李志明. 颗石藻室内培养及应用研究进展[J]. 地球科学进展, 2014, 29(11): 1303-1313. doi: 10.11867/j.issn.1001-8166.2014.11.1303 [11] RIEBESELL U, ZONDERVAN I, ROST B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407(6802): 364-367. doi: 10.1038/35030078
[12] BEAUFORT L, PROBERT I, DE GARIDEL-THORON T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476(7358): 80-83. doi: 10.1038/nature10295
[13] WINTER A, HENDERIKS J, BEAUFORT L, et al. Poleward expansion of the coccolithophore Emiliania huxleyi[J]. Journal of Plankton Research, 2014, 36(2): 316-325. doi: 10.1093/plankt/fbt110
[14] FREEMAN N M, LOVENDUSKI N S. Decreased calcification in the Southern Ocean over the satellite record[J]. Geophysical Research Letters, 2015, 42(6): 1834-1840. doi: 10.1002/2014GL062769
[15] RIEBESELL U, BACH L T, BELLERBY R G J, et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification[J]. Nature Geoscience, 2017, 10(1): 19-23. doi: 10.1038/ngeo2854
[16] WATABE N, WILBUR K M. Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae)[J]. Limnology and Oceanography, 1966, 11(4): 567-575. doi: 10.4319/lo.1966.11.4.0567
[17] CALDEIRA K, WICKETT M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
[18] CABRER L, METCALFE G. Admissibility via natural dualities[J]. Journal of Pure and Applied Algebra, 2015, 219(9): 4229-4253. doi: 10.1016/j.jpaa.2015.02.015
[19] FENG Y Y, ROLEDA M Y, ARMSTRONG E, et al. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi[J]. Limnology and Oceanography, 2017, 62(2): 519-540. doi: 10.1002/lno.10442
[20] FENG Y Y, ROLEDA M Y, ARMSTRONG E, et al. Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi[J]. Biogeosciences, 2018, 15(2): 581-595. doi: 10.5194/bg-15-581-2018
[21] BOYD P W, DONEY S C. Modelling regional responses by marine pelagic ecosystems to global climate change[J]. Geophysical Research Letters, 2002, 29(16). doi: 10.1029/2001GL014130
[22] 高坤山. 海洋酸化的生理生态效应及其与升温、UV辐射和低氧化的关系[J]. 厦门大学学报(自然科学版), 2018, 57(6): 800-810. [23] ROST B, RIEBESELL U, BURKHARDT S, et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnology and Oceanography, 2003, 48(1): 55-67. doi: 10.4319/lo.2003.48.1.0055
[24] PAASCHE E. Coccolith formation[J]. Nature, 1962, 193(4820): 1094-1095.
[25] BERRY L, TAYLOR A R, LUCKEN U, et al. Calcification and inorganic carbon acquisition in coccolithophores[J]. Functional Plant Biology, 2002, 29(3): 289-299. doi: 10.1071/PP01218
[26] ZONDERVAN I, ROST B, RIEBESELL U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths[J]. Journal of Experimental Marine Biology and Ecology, 2002, 272(1): 55-70. doi: 10.1016/S0022-0981(02)00037-0
[27] FENG Y Y, WARNER M E, ZHANG Y H, et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae)[J]. European Journal of Phycology, 2008, 43(1): 87-98. doi: 10.1080/09670260701664674
[28] ENGEL A, ZONDERVAN I, AERTS K, et al. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments[J]. Limnology and Oceanography, 2005, 50(2): 493-507. doi: 10.4319/lo.2005.50.2.0493
[29] BACH L T, RIEBESELL U, GUTOWSKA M A, et al. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework[J]. Progress in Oceanography, 2015, 135: 125-138. doi: 10.1016/j.pocean.2015.04.012
[30] KOTTMEIER D M, ROKITTA S D, ROST B. H+-driven increase in CO2 uptake and decrease in HCO3− uptake explain coccolithophores' acclimation responses to ocean acidification[J]. Limnology and Oceanography, 2016, 61(6): 2045-2057. doi: 10.1002/lno.10352
[31] SETT S, BACH L T, SCHULZ K G, et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2[J]. PLoS One, 2014, 9(2): e88308. doi: 10.1371/journal.pone.0088308
[32] KRUMHARDT K M, LOVENDUSKI N S, IGLESIAS-RODRIGUEZ M D, et al. Coccolithophore growth and calcification in a changing ocean[J]. Progress in Oceanography, 2017, 159: 276-295. doi: 10.1016/j.pocean.2017.10.007
[33] RICKABY R E M, HENDERIKS J, YOUNG J N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species[J]. Climate of the Past, 2010, 6(6): 771-785. doi: 10.5194/cp-6-771-2010
[34] LANGER G, GEISEN M, BAUMANN K H, et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): Q09006.
[35] WESTBROEK P, BROWN C W, VAN BLEIJSWIJK J, et al. A model system approach to biological climate forcing. The example of Emiliania huxleyi[J]. Global and Planetary Change, 1993, 8(1/2): 27-46.
[36] IGLESIAS-RODRIGUEZ M D, HALLORAN P R, RICKABY R E M, et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320(5874): 336-340. doi: 10.1126/science.1154122
[37] SHI D, XU Y, MOREL F M M. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth[J]. Biogeosciences, 2009, 6(7): 1199-1207. doi: 10.5194/bg-6-1199-2009
[38] LANGER G, BODE M. CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporus[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05001.
[39] RAVEN J A, CRAWFURD K. Environmental controls on coccolithophore calcification[J]. Marine Ecology Progress Series, 2012, 470: 137-166. doi: 10.3354/meps09993
[40] SMITH H E K, TYRRELL T, CHARALAMPOPOULOU A, et al. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23): 8845-8849. doi: 10.1073/pnas.1117508109
[41] YOUNG J R, WESTBROEK P. Genotypic variation in the coccolithophorid species Emiliania huxleyi[J]. Marine Micropaleontology, 1991, 18(1/2): 5-23.
[42] COOK S S, WHITTOCK L, WRIGHT S W, et al. Photosynthetic pigment and genetic differences between two Southern Ocean morphotypes of Emiliania Huxleyi (haptophyta)[J]. Journal of Phycology, 2011, 47(3): 615-626. doi: 10.1111/j.1529-8817.2011.00992.x
[43] MÜLLER M, TRULL T, HALLEGRAEFF G. Differing responses of three Southern Ocean Emiliania huxleyi ecotypes to changing seawater carbonate chemistry[J]. Marine Ecology Progress Series, 2015, 531: 81-90. doi: 10.3354/meps11309
[44] MACKINDER L, WHEELER G, SCHROEDER D, et al. Molecular mechanisms underlying calcification in coccolithophores[J]. Geomicrobiology Journal, 2010, 27(6/7): 585-595.
[45] EPPLEY R W. Temperature and phytoplankton growth in the sea[J]. Fishery Bulletin, 1972, 70(4): 1063-1085.
[46] RAVEN J A, GEIDER R J. Temperature and algal growth[J]. New Phytologist, 1988, 110(4): 441-461. doi: 10.1111/j.1469-8137.1988.tb00282.x
[47] BOYD P W, RYNEARSON T A, ARMSTRONG E A, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study[J]. PLoS One, 2013, 8(5): e63091. doi: 10.1371/journal.pone.0063091
[48] BOYD P W, COLLINS S, DUPONT S, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review[J]. Global Change Biology, 2018, 24(6): 2239-2261. doi: 10.1111/gcb.14102
[49] BUITENHUIS E T, PANGERC T, FRANKLIN D J, et al. Growth rates of six coccolithophorid strains as a function of temperature[J]. Limnology and Oceanography, 2008, 53(3): 1181-1185. doi: 10.4319/lo.2008.53.3.1181
[50] PAASCHE E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions[J]. Phycologia, 2001, 40(6): 503-529. doi: 10.2216/i0031-8884-40-6-503.1
[51] DANIELS C J, SHEWARD R M, POULTON A J. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species[J]. Biogeosciences, 2014, 11(23): 6915-6925. doi: 10.5194/bg-11-6915-2014
[52] MATSON P G, LADD T M, HALEWOOD E R, et al. Intraspecific differences in biogeochemical responses to thermal change in the coccolithophore Emiliania huxleyi[J]. PLoS One, 2016, 11(9): e0162313. doi: 10.1371/journal.pone.0162313
[53] SARUWATARI K, SATOH M, HARADA N, et al. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas[J]. Biogeosciences, 2016, 13(9): 2743-2755. doi: 10.5194/bg-13-2743-2016
[54] DE BODT C, VAN OOSTENDE N, HARLAY J, et al. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size[J]. Biogeosciences, 2010, 7(5): 1401-1412. doi: 10.5194/bg-7-1401-2010
[55] GERECHT A C, ŠUPRAHA L, EDVARDSEN B, et al. High temperature decreases the PIC/POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)[J]. Biogeosciences, 2014, 11(13): 3531-3545. doi: 10.5194/bg-11-3531-2014
[56] ROSAS-NAVARRO A, LANGER G, ZIVERI P. Temperature affects the morphology and calcification of Emiliania huxleyi strains[J]. Biogeosciences, 2016, 13(10): 2913-2926. doi: 10.5194/bg-13-2913-2016
[57] PIERCE D W, GLECKLER P J, BARNETT T P, et al. The fingerprint of human‐induced changes in the ocean's salinity and temperature fields[J]. Geophysical Research Letters, 2012, 39(21): L21704.
[58] WANG X W, FU F X, QU P P, et al. How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?[J]. Biogeosciences, 2019, 16(22): 4393-4409. doi: 10.5194/bg-16-4393-2019
[59] PERRIN L, PROBERT I, LANGER G, et al. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores[J]. Biogeosciences, 2016, 13(21): 5983-6001. doi: 10.5194/bg-13-5983-2016
[60] POULTON A J, ADEY T R, BALCH W M, et al. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(5/6/7): 538-557.
[61] TYRRELL T, TAYLOR A H. A modelling study of Emiliania huxleyi in the NE atlantic[J]. Journal of Marine Systems, 1996, 9(1/2): 83-112.
[62] LESSARD E J, MERICO A, TYRRELL T. Nitrate: phosphate ratios and Emiliania huxleyi blooms[J]. Limnology and Oceanography, 2005, 50(3): 1020-1024. doi: 10.4319/lo.2005.50.3.1020
[63] MÜLLER M N, ANTIA A N, LAROCHE J. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi[J]. Limnology and Oceanography, 2008, 53(2): 506-512. doi: 10.4319/lo.2008.53.2.0506
[64] CABRÉÉA, MARINOV I, LEUNG S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models[J]. Climate Dynamics, 2015, 45(5/6): 1253-1280.
[65] GRUBER N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1943): 1980-1996. doi: 10.1098/rsta.2011.0003
[66] NANNINGA H J, TYRRELL T. Importance of light for the formation of algal blooms by Emiliania huxleyi[J]. Marine Ecology Progress Series, 1996, 136: 195-203. doi: 10.3354/meps136195
[67] BALCH W M, HOLLIGAN P M, KILPATRICK K A. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi[J]. Continental Shelf Research, 1992, 12(12): 1353-1374. doi: 10.1016/0278-4343(92)90059-S
[68] LANGER G, GUSSONE N, NEHRKE G, et al. Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: independence of growth and calcification rate[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05007.
[69] NIMER N A, MERRETT M J. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon[J]. New Phytologist, 1993, 123(4): 673-677. doi: 10.1111/j.1469-8137.1993.tb03776.x
[70] ROKITTA S D, ROST B. Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi[J]. Limnology and Oceanography, 2012, 57(2): 607-618. doi: 10.4319/lo.2012.57.2.0607
[71] MONTEIRO F M, BACH L T, BROWNLEE C, et al. Why marine phytoplankton calcify[J]. Science Advances, 2016, 2(7): e1501822. doi: 10.1126/sciadv.1501822
[72] XU J T, BACH L T, SCHULZ K G, et al. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation[J]. Biogeosciences, 2016, 13(16): 4637-4643. doi: 10.5194/bg-13-4637-2016
[73] Feng Y Y, ROLEDA M Y, ARMSTRONG E, et al. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi [J]. Global Change Biology, 2020, 26(10): 5630–5645.
[74] FENG Y Y, HARE C E, LEBLANC K, et al. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response[J]. Marine Ecology Progress Series, 2009, 388: 13-25. doi: 10.3354/meps08133
[75] BALCH W M. The ecology, biogeochemistry, and optical properties of coccolithophores[J]. Annual Review of Marine Science, 2018, 10: 71-98. doi: 10.1146/annurev-marine-121916-063319
[76] LEFEBVRE S C, BENNER I, STILLMAN J H, et al. Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle[J]. Global Change Biology, 2012, 18(2): 493-503. doi: 10.1111/j.1365-2486.2011.02575.x
[77] ROUCO M, BRANSON O, LEBRATO M, et al. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios[J]. Frontiers in Microbiology, 2013, 4: 155.
[78] 廖 晏, 冯媛媛, 刘 瑶, 等. 氮限制和海洋酸化对颗石藻Emiliania huxleyi NIWA1108生理指标的交互影响[J]. 天津科技大学学报, 2019, 34(4): 56-62. [79] 梁 文, NILANTHI P, 冉莉华, 等. 南海北部和西菲律宾海颗石藻种群特征及差异[J]. 微体古生物学报, 2017, 34(3): 279-290. [80] 孙 军, 靳少非. 中国近海今生颗石藻物种多样性初步研究[J]. 生物多样性, 2011, 19(6): 787-797. [81] CHEN Y L L, CHEN H Y, CHUNG C W. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14/15): 1617-1633.
-
期刊类型引用(4)
1. 栾青杉,袁涌铨,时永强,刘永健,韩青鹏. 2021年秋季黄海颗石藻群落结构特征及影响因素探讨. 海洋科学. 2024(12): 44-58 . 百度学术
2. 王雅婻,冯媛媛,李童童,蔡婷,白有成. 颗石藻Emiliania huxleyi对升温和温度波动响应的株间效应. 海洋与湖沼. 2023(01): 98-112 . 百度学术
3. 林昕,陈曦贝,石哲萱,王宏伟. 海洋微藻碳酸酐酶研究进展. 厦门大学学报(自然科学版). 2023(03): 325-337 . 百度学术
4. 张泳,马帅,谢蓉蓉,周志华,张虹,韩永和,张勇. 颗石藻C∶N∶P比率对海洋酸化与暖化的响应及其机制. 亚热带资源与环境学报. 2023(02): 24-32 . 百度学术
其他类型引用(5)