• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

入海排污口污水微生物群落结构及其影响因素研究进展

付韵涵 苏洁 关道明 樊景凤

引用本文:
Citation:

入海排污口污水微生物群落结构及其影响因素研究进展

    作者简介: 付韵涵(1996-),女,辽宁辽阳人,硕士生,主要研究方向为海洋微生物,E-mail:1411811912@qq.com;
    通讯作者: 关道明(1960-),男,研究员,主要研究方向为环境工程,E-mail:dmguan@nmemc.org.cn 樊景凤(1972-),女,研究员,主要研究方向为海洋微生物,E-mail:jffan@nmemc.org.cn
  • 基金项目: 国家重点研发计划“海洋环境安全保障”重点专项项目(2017YFC1404500);国家海洋局近岸海域生态环境重点实验室基金项目(201813)

Research advances in microbial community structure and its influencing factors in sewage discharged into the sea

  • 摘要: 入海排污口污水中存在大量微生物,其进入海洋后会对邻近海域的海水水质及海洋生物健康造成巨大威胁。因此,研究入海排污口污水中微生物的群落结构及其影响因素对于了解排污口污水对海洋生态环境的影响具有重要意义。本文综述了国内外不同类型入海排污口微生物的群落结构特征,着重介绍了影响入海排污口微生物群落结构的重要因素,并进一步阐述了排污口污水中微生物对排污口邻近海域的海水水质和海洋生物的影响。
  • [1] MCLELLAN S L, HUSE S M, MUELLER-SPITZ S R, et al. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent[J]. Environmental Microbiology, 2010, 12(2): 378-392. doi: 10.1111/j.1462-2920.2009.02075.x
    [2] 国家海洋局. 中国海洋生态环境状况公报[R]. 北京: 国家海洋局, 2018.
    [3] JUDA L. The European Union and the marine strategy framework directive: continuing the development of European ocean use management[J]. Ocean Development and International Law, 2010, 41(1): 34-54. doi: 10.1080/00908320903285463
    [4] STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environmental Health, 2008, 7(S2): S3.
    [5] 邬明权, 牛 铮, 高 帅, 等. 渤海陆源入海排污口的多尺度遥感监测分析[J]. 地球信息科学学报, 2012, 14(3): 405-410.
    [6] HUGHES K A, THOMPSON A. Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers[J]. Environmental Pollution, 2004, 127(3): 315-321. doi: 10.1016/j.envpol.2003.09.004
    [7] WALTERS S P, YAMAHARA K M, BOEHM A B. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters[J]. Water Research, 2009, 43(19): 4929-4939. doi: 10.1016/j.watres.2009.05.047
    [8] TAMAKI H, ZHANG R, ANGLY F E, et al. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate[J]. Environmental Microbiology, 2012, 14(2): 441-452. doi: 10.1111/j.1462-2920.2011.02630.x
    [9] BARBARA A. METHÉ, NELSON K E, POP M, et al A framework for human microbiome research[J]. Nature, 2012, 486(7402): 215-221. doi: 10.1038/nature11209
    [10] YE L, ZHANG T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing[J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2681-2690. doi: 10.1007/s00253-012-4082-4
    [11] SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biology, 2016, 14(8): e1002533. doi: 10.1371/journal.pbio.1002533
    [12] RAES J, BORK P. Molecular ecosystems biology: towards an understanding of community function[J]. Nature Reviews Microbiology, 2008, 6(9): 693-699. doi: 10.1038/nrmicro1935
    [13] WANG X H, HU M, XIA Y, et al. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China[J]. Applied and Environmental Microbiology, 2012, 78(19): 7042-7047. doi: 10.1128/AEM.01617-12
    [14] HU M, WANG X H, WEN X H, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012, 117: 72-79. doi: 10.1016/j.biortech.2012.04.061
    [15] 徐爱玲, 任 杰, 宋志文, 等. 污水处理厂尾水细菌群落结构分析[J]. 环境科学, 2014, 35(9): 3473-3479.
    [16] 杨文新, 樊景凤, 周 君, 等. 大连沿海排污口及邻近水域细菌动态分析[J]. 海洋与湖沼, 2013, 44(5): 1249-1256.
    [17] SHANKS O C, NEWTON R J, KELTY C A, et al. Comparison of the microbial community structures of untreated wastewaters from different geographic locales[J]. Applied and Environmental Microbiology, 2013, 79(9): 2906-2913. doi: 10.1128/AEM.03448-12
    [18] 刘 霜, 李永霞, 刘旭东, 等. 青岛陆源排污口邻近海域异养细菌的组成与分布[J]. 渔业科学进展, 2014, 35(6): 23-29. doi: 10.11758/yykxjz.20140604
    [19] 杨雪辰, 王继华. 污水厂尾水中微生物群落结构多样性研究[C]//水资源生态保护与水污染控制研讨会论文集, 哈尔滨: 中国环境科学学会, 2013: 578–582.
    [20] 刘 霜, 李永霞, 刘旭东, 等. 渤海排污口邻近海域异养细菌的组成与分布[J]. 环境监测管理与技术, 2014, 26(1): 22-25. doi: 10.3969/j.issn.1006-2009.2014.01.008
    [21] 郭明月. 基于微生物群落结构和病原菌分布的尾水棑海安全研究[D]. 青岛: 青岛理工大学, 2016.
    [22] TEODORO A C, DULEBA W, GUBITOSO S, et al. Analysis of foraminifera assemblages and sediment geochemical properties to characterise the environment near Araçá and Saco da Capela domestic sewage submarine outfalls of Sao Sebastião Channel, São Paulo State, Brazil[J]. Marine Pollution Bulletin, 2010, 60(4): 536-553. doi: 10.1016/j.marpolbul.2009.11.011
    [23] DESPLAND L M, VANCOV T, ARAGNO M, et al. Diversity of microbial communities in an attached-growth system using BauxsolTM pellets for wastewater treatment[J]. Science of the Total Environment, 2012, 433: 383-389. doi: 10.1016/j.scitotenv.2012.06.079
    [24] YU J, SEON J, PARK Y, et al. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment[J]. Bioresource Technology, 2012, 117: 172-179. doi: 10.1016/j.biortech.2012.04.078
    [25] WANG Z H, YANG J Q, ZHANG D J, et al. Composition and structure of microbial communities associated with different domestic sewage outfalls[J]. Genetics and Molecular Research, 2014, 13(3): 7542-7552. doi: 10.4238/2014.September.12.21
    [26] EMMANUEL E, PIERRE M G, PERRODIN Y. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers[J]. Environment International, 2009, 35(4): 718-726. doi: 10.1016/j.envint.2009.01.011
    [27] PRADO T, SILVA D M, GUILAYN W C, et al. Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants[J]. Water Research, 2011, 45(3): 1287-1297. doi: 10.1016/j.watres.2010.10.012
    [28] EMMANUEL E, PERRODIN Y, KECK G, et al. Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network[J]. Journal of Hazardous Materials, 2005, 117(1): 1-11. doi: 10.1016/j.jhazmat.2004.08.032
    [29] 王世权, 王惠卿, 王宪东, 等. 污水排海设计中粪大肠菌群衰减率的测定与分析[J]. 海洋环境科学, 1992, 11(1): 28-33.
    [30] KAY D, STAPLETON C M, WYER M D, et al. Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T90 values for modelling faecal indicators in recreational waters[J]. Water Research, 2005, 39(4): 655-667. doi: 10.1016/j.watres.2004.11.014
    [31] BOKN T L, MOY F E, WALDAY M. Improvement of the shallow water communities following reductions of industrial outlets and sewage discharge in the Hvaler estuary, Norway[J]. Hydrobiologia, 1996, 326-327(1): 297-304. doi: 10.1007/BF00047822
    [32] PACHEPSKY Y A, BLAUSTEIN R A, WHELAN G, et al. Comparing temperature effects on Escherichia coli, Salmonella, and Enterococcus survival in surface waters[J]. Letters in Applied Microbiology, 2014, 59(3): 278-283. doi: 10.1111/lam.12272
    [33] JIMÉNEZ B, CHÁVEZ A, MAYA C, et al. Removal of microorganisms in different stages of wastewater treatment for Mexico City[J]. Water Science and Technology, 2001, 43(10): 155-162. doi: 10.2166/wst.2001.0607
    [34] 王中华, 徐茂琴, 谢 利, 等. 宁波沿海陆源排污口拟杆菌(Bacteroidetes)分布的特点[J]. 海洋与湖沼, 2014, 45(5): 1030-1036. doi: 10.11693/hyhz20140600165
    [35] WETZ J J, BLACKWOOD A D, FRIES J S, et al. Quantification of Vibrio vulnificus in an estuarine environment: a multi-year analysis using QPCR[J]. Estuaries and Coasts, 2014, 37(2): 421-435. doi: 10.1007/s12237-013-9682-4
    [36] BARRIL P A, FUMIAN T M, PREZ V E, et al. Rotavirus seasonality in urban sewage from Argentina: effect of meteorological variables on the viral load and the genetic diversity[J]. Environmental Research, 2015, 138: 409-415. doi: 10.1016/j.envres.2015.03.004
    [37] EICHMILLER J J, HICKS R E, SADOWSKY M J. Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent[J]. Environmental Science and Technology, 2013, 47(7): 3395-3402. doi: 10.1021/es305116c
    [38] STRAMSKI D, KIEFER D A. Light scattering by microorganisms in the open ocean[J]. Progress in Oceanography, 1991, 28(4): 343-383. doi: 10.1016/0079-6611(91)90032-H
    [39] WALTERS S P, FIELD K G. Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms[J]. Environmental Microbiology, 2009, 11(6): 1410-1421. doi: 10.1111/j.1462-2920.2009.01868.x
    [40] SENGER H. The effect of blue light on plants and microorganisms[J]. Photochemistry and Photobiology, 1982, 35(6): 911-920. doi: 10.1111/j.1751-1097.1982.tb02668.x
    [41] BYAPPANAHALLI M N, NEVERS M B, KORAJKIC A, et al. Enterococci in the environment[J]. Microbiology and Molecular Biology Reviews, 2012, 76(4): 685-706. doi: 10.1128/MMBR.00023-12
    [42] FEITOSA R C. Ocean outfalls as an alternative to minimizing risks to human and environmental health[J]. Ciência and Saúde Coletiva, 2017, 22(6): 2037-2048. doi: 10.1590/1413-81232017226.15522016
    [43] KORAJKIC A, MCMINN B R, SHANKS O C, et al. Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi River[J]. Applied and Environmental Microbiology, 2014, 80(13): 3952-3961. doi: 10.1128/AEM.00388-14
    [44] GREEN H C, SHANKS O C, SIVAGANESAN M, et al. Differential decay of human faecal Bacteroides in marine and freshwater[J]. Environmental Microbiology, 2011, 13(12): 3235-3249. doi: 10.1111/j.1462-2920.2011.02549.x
    [45] HASHIM A, HAJJAJ M. Impact of desalination plants fluid effluents on the integrity of seawater, with the Arabian Gulf in perspective[J]. Desalination, 2005, 182(1–3): 373-393. doi: 10.1016/j.desal.2005.04.020
    [46] JEANNEAU L, SOLECKI O, WÉRY N, et al. Relative decay of fecal indicator bacteria and human-associated markers: a microcosm study simulating wastewater input into seawater and freshwater[J]. Environmental Science and Technology, 2012, 46(4): 2375-2382. doi: 10.1021/es203019y
    [47] MATTIOLI M C, SASSOUBRE L M, RUSSELL T L, et al. Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters[J]. Water Research, 2017, 108: 106-114. doi: 10.1016/j.watres.2016.10.066
    [48] OKABE S, SHIMAZU Y. Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity[J]. Applied Microbiology and Biotechnology, 2007, 76(4): 935-944. doi: 10.1007/s00253-007-1048-z
    [49] OUARDANI I, MANSO C F, AOUNI M, et al. Efficiency of hepatitis A virus removal in six sewage treatment plants from central Tunisia[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10759-10769. doi: 10.1007/s00253-015-6902-9
    [50] SCHULZ C J, CHILDERS G W. Bacteroidales diversity and decay in response to variations in temperature and salinity[J]. Applied and Environmental Microbiology, 2011, 77(8): 2563-2572. doi: 10.1128/AEM.01473-10
    [51] ELLIOTT J K, SPEAR E, WYLLIE‐ECHEVERRIA S. Mats of Beggiatoa bacteria reveal that organic pollution from lumber mills inhibits growth of Zostera marina[J]. Marine Ecology, 2006, 27(4): 372-380. doi: 10.1111/j.1439-0485.2006.00100.x
    [52] FENCHEL T, BERNARD C. Mats of colourless sulphur bacteria. I. Major microbial processes[J]. Marine Ecology Progress Series, 1995, 128: 161-170. doi: 10.3354/meps128161
    [53] CAMPBELL A M, FLEISHER J, SINIGALLIANO C, et al. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida[J]. Microbiology Open, 2015, 4(3): 390-408. doi: 10.1002/mbo3.245
    [54] 佟 娟, 魏源送. 污水处理厂削减耐药菌与抗性基因的研究进展[J]. 环境科学学报, 2012, 32(11): 2650-2659.
    [55] HUANG K L, TANG J Y, ZHANG X X, et al. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing[J]. International Journal of Molecular Sciences, 2014, 15(6): 10083-10100. doi: 10.3390/ijms150610083
    [56] HENDRIKSEN R S, MUNK P, NJAGE P, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage[J]. Nature Communications, 2019, 10(1): 1124. doi: 10.1038/s41467-019-08853-3
    [57] AKIBA M, SENBA H, OTAGIRI H, et al. Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India[J]. Ecotoxicology and Environmental Safety, 2015, 115: 203-208. doi: 10.1016/j.ecoenv.2015.02.018
    [58] 王学昌, 娄安刚, 郑丙辉, 等. 不同方式污水排海对海水水质的影响[J]. 海洋环境科学, 2002, 21(3): 57-60. doi: 10.3969/j.issn.1007-6336.2002.03.013
    [59] 董文涛. 海洋生态环境现状及治理对策[J]. 中国科技信息, 2014, 17: 60-61. doi: 10.3969/j.issn.1001-8972.2014.10.015
    [60] 狄 龙, 马 骏. 台州市入海排污口粪大肠菌群调查[J]. 农业与技术, 2012, 32(4): 160. doi: 10.3969/j.issn.1671-962X.2012.04.127
    [61] 张微微, 王菊英, 王 燕, 等. 海水浴场水质监测与评价研究进展[J]. 海洋开发与管理, 2014, 31(7): 99-104. doi: 10.3969/j.issn.1005-9857.2014.07.021
    [62] 李文雯, 刘克明, 王 娜, 等. 2016年天津主要陆源入海排污口排污状况综合评价[J]. 河北渔业, 2019, (9): 43-50.
    [63] World Health Organization. Addendum to the WHO guidelines for safe recreational water environments, Volume 1, Coastal and fresh waters: list of agreed updates[R]. Geneva, Switzerland: World Health Organization, 2009.
    [64] US Environmental Protection Agency. Recreational water quality criteria[R]. Washington, DC: Office of water, US Environmental Protection Agency, 2012.
    [65] ROTH F, LESSA G C, WILD C, et al. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)[J]. Marine Pollution Bulletin, 2016, 106(1–2): 43-48. doi: 10.1016/j.marpolbul.2016.03.048
    [66] 黄德铭, 刘晓收, 林明仙, 等. 污水排海对小型底栖生物丰度和生物量的影响[J]. 应用生态学报, 2014, 25(10): 3023-3031.
    [67] 海洋生态系围隔实验组. 工业区排污口沉积物对海洋浮游生物生态系的影响[J]. 海洋学报, 1989, 11(1): 79-84.
    [68] 于 潇, 刘晓收. 青岛汇泉湾排污口附近大型底栖动物的群落结构和多样性[J]. 应用与环境生物学报, 2017, (01): 17-22.
    [69] XU J, LEE J H W, YIN K D, et al. Environmental response to sewage treatment strategies: Hong Kong’s experience in long term water quality monitoring[J]. Marine Pollution Bulletin, 2011, 62(11): 2275-2287. doi: 10.1016/j.marpolbul.2011.07.020
    [70] BLANSHARD A. Impact of Pollutants on Coastal and Benthic Marine Communities[M].Ecological Impacts of Toxic Chemical. 2011.
    [71] BRAKE F, KIERMEIER A, ROSS T, et al. Spatial and temporal distribution of norovirus and E. coli in sydney rock oysters following a sewage overflow into an estuary[J]. Food and Environmental Virology, 2018, 10(1): 7-15. doi: 10.1007/s12560-017-9313-5
    [72] STARK J S, CORBETT P A, DUNSHEA G, et al. The environmental impact of sewage and wastewater outfalls in Antarctica: an example from Davis station, East Antarctica[J]. Water Research, 2016, 105: 602-614. doi: 10.1016/j.watres.2016.09.026
    [73] STARK J S, BRIDGEN P, DUNSHEA G, et al. Dispersal and dilution of wastewater from an ocean outfall at Davis Station, Antarctica, and resulting environmental contamination[J]. Chemosphere, 2016, 152: 142-157. doi: 10.1016/j.chemosphere.2016.02.053
    [74] CONLAN K E, KIM S L, LENIHAN H S, et al. Benthic changes during 10 years of organic enrichment by McMurdo Station, Antarctica[J]. Marine Pollution Bulletin, 2004, 49(1–2): 43-60. doi: 10.1016/j.marpolbul.2004.01.007
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  37
  • PDF下载量:  2
出版历程
  • 收稿日期:  2020-02-05
  • 录用日期:  2020-04-25
  • 网络出版日期:  2020-10-12

入海排污口污水微生物群落结构及其影响因素研究进展

    作者简介:付韵涵(1996-),女,辽宁辽阳人,硕士生,主要研究方向为海洋微生物,E-mail:1411811912@qq.com
    通讯作者: 关道明(1960-),男,研究员,主要研究方向为环境工程,E-mail:dmguan@nmemc.org.cn
    通讯作者: 樊景凤(1972-),女,研究员,主要研究方向为海洋微生物,E-mail:jffan@nmemc.org.cn
  • 1. 大连海事大学 环境科学与工程学院,辽宁 大连 116026
  • 2. 国家海洋环境监测中心,辽宁 大连 116023
基金项目: 国家重点研发计划“海洋环境安全保障”重点专项项目(2017YFC1404500);国家海洋局近岸海域生态环境重点实验室基金项目(201813)

摘要: 入海排污口污水中存在大量微生物,其进入海洋后会对邻近海域的海水水质及海洋生物健康造成巨大威胁。因此,研究入海排污口污水中微生物的群落结构及其影响因素对于了解排污口污水对海洋生态环境的影响具有重要意义。本文综述了国内外不同类型入海排污口微生物的群落结构特征,着重介绍了影响入海排污口微生物群落结构的重要因素,并进一步阐述了排污口污水中微生物对排污口邻近海域的海水水质和海洋生物的影响。

English Abstract

  • 陆源入海排污口是陆源污染排入海洋的重要途径,是海洋污染的主要原因之一[1]。据《2017年中国海洋生态环境状况公报》报道,监测的371个陆源入海排污口中,工业排污口占29%,市政排污口占43%,排污河占24%,其他类排污口占4%,个别排污口邻近海域粪大肠菌群含量超标[2]。国外水质监测结果表明陆源入海排污口排放的微生物是损害海洋环境的重要因素。美国2014年通过评估8个州1859英里的沿海海岸,发现病原体是造成近岸海域损害的主要原因,市政排污口和工业排污口排放的污水是其主要来源。欧盟2005年《海洋战略框架指令》显示,陆源入海排污口中的微生物污染是影响排污口邻近海域水质的重要影响因素之一[3]。同时,陆源入海排污口也是海洋环境监测的重要内容,通过掌握全球近岸海域陆源入海排污口排放入海的污水量、微生物种类和数量以及各种污染物的浓度状况,可以了解陆源入海排污口对邻近海域的微生物输入情况以及对近岸海域生态环境损害的状况与程度,进而更好地保护海洋环境与海洋渔业资源[4-5]

    研究表明,盐度、温度的季节性变化、叶绿素a、排污口污水中的成分(溶解氧和浊度等)、排污口类型、潮汐和排污口地理位置上的空间差异等都会对入海排污口污水中微生物的群落结构、浓度及时空分布情况产生不同程度的影响[6-8]。陆源入海排污口污水中的微生物会破坏邻近海域的生态环境,威胁海洋生物健康。流行病学研究表明,排污口污水中的微生物会对城市居民饮用水和海产食品造成威胁[9]。本文系统介绍了不同类型排污口污水中微生物的群落组成,探究了影响排污口污水中微生物的重要因素,论述了微生物对排污口邻近海域水质和海洋生物等生态环境的影响,为预防和治理排污口污水排放问题提供理论依据。

    • 市政污水是陆源入海排污口排入邻近海域的最大污染源之一[10]。国外市政排污口主要的微生物分布在20~27个菌门,主要包括:变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes),主要分布在44~65个纲[4,11-12]。在市政排污口,变形菌门(21%~65%)占多数,其中β-变形菌纲(β-proteobacteria)是最丰富的一类,主要负责去除污水中的有机物和营养成分[13-14]。我国市政排污口的微生物主要分布在11个纲,其中β-变形菌纲和γ-变形菌纲(γ-proteobacteria)占绝对优势,而放线菌纲(Actinobacteria)、拟杆菌纲(Bacteroidia)、浮霉菌纲(Planctomycetacia)的细菌所占数量较低[15]。杨文新等人通过对大连陆源入海排污口及邻近海域微生物进行动态分析,结果显示市政排污口全年优势菌为假交替单胞菌属(Pseudoalteromonas)、肠杆菌科(Enterobacyeriaceae)、假单胞菌属(Pseudomonas)、弧菌属(Vibrio)和希瓦氏菌属(Shewanella);其中肠杆菌科优势明显,弧菌属在排污口及其邻近海域均有检出,4个季节均有分布[16]

    • 目前工业污水的排放量日益增多,其微生物群落结构也十分复杂,并且其群落结构成分和性质与市政污水相比有很大差异,主要表现为:成分复杂,差异性大,并且不同地理位置的排污口污水中的微生物种类可能类似,但不同行业的工业污水中的微生物群落组成会存在很大差异。国外工业排污口的菌门主要由变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、浮霉菌门(Planctomycetes)等22~23个菌门组成,弧菌属为优势菌群[17]。在我国,弧菌也是工业排污口污水中的优势菌群,主要包括溶藻弧菌(Vibrio alginolyticus)、坎贝氏弧菌(Vibrio campestris)、副溶血性弧菌(Vibrio parahemolyticus)和灿烂弧菌(Vibrio splendidus) 4个种,其中溶藻弧菌数量最多[18]。杨雪辰、刘霜等人[19-20]通过对不同工业类型排污口进行分析,发现不同工业类型排污口的微生物组成及其优势菌群均不相同,并且存在很大差异,微生物群落结构与水质指标存在一定的相关性。郭明月等人[21]通过研究发现,工业排污口污水中细菌的群落结构受季节性影响比较明显,夏季的致病菌种类及数量比冬季多,其中包括与人类心血管疾病、胃肠道疾病等相关的致病菌如弓形杆菌(Arcobacter )等。

    • 生活污水排污口污水中污染物的浓度很高,包括悬浮的固体、有机物和养分,可能对邻近海域造成很大的破坏[22]。细菌是生活污水排污口污水中含量最高且种类最多的一类微生物[23-24]。国外学者发现生活污水排污口污水中群落组成差异很大,一项对5个生活污水排污口污水的研究结果表明,污水中存在多种细菌,一些以变形杆菌为主导,另一些则以拟杆菌为主,在这项研究中污水中的γ-变形菌纲包括肠杆菌科(Enterobacteriaceae)、弧菌科(Vibrionaceae)和假单胞菌科(Pseudomonadaceae),一些细菌与γ-变形菌纲有关,包括沙门氏菌(Salmonella choleraesuis)、耶尔森氏菌(Yersinia)、弧菌(Vibrio)和假单胞菌(Pseudomonas)[25]。我国生活污水排污口中微生物群落结构复杂,主要含志贺氏菌(Shigella)、沙门氏菌(Salmonella)、弓形杆菌(Arcobacter)、大肠杆菌(Escherichia coli)、霍乱弧菌(Vibrio cholerae)、金黄色葡萄球菌(Staphylococcus aureus)等多种细菌[21]

    • 医院污水已经成为环境中微生物的主要来源,除了工业排污口和生活排污口以外,医疗卫生排污口污水由于携带大量微生物,会对排污口邻近海域的微生物群落结构造成影响[26]。在国外,通过研究医疗卫生排污口污水中的微生物检测数据,证实了微生物对排污口邻近海域会造成潜在影响,对于建立废水管理政策标准有重大意义[27]。Emmanuel等人在污水中检测出粪大肠菌群(Fecal Coliform),其细菌浓度低于市政排污口污水中的细菌浓度,此外污水中还存在费氏弧菌(Vibrio fischeri)和假单胞菌属(Pseudomonas),证实了污水中的微生物会对生态毒理风险评估造成影响[28]。我国学者从微生物角度分析了医疗卫生排污口污水对邻近海域水质的影响。王世权等人对大连星海浴场医疗卫生排污口污水中的细菌总数、海洋异养菌数、大肠菌群数以及致病菌进行了采样和调查工作,结果显示,两个医疗卫生排污口中的大肠菌群数严重超标,对排放环境存在极大的潜在危险性;此外,还检出致病性沙门氏菌以及腹泻、猩红热和寒伤病的致病菌,对邻近海域造成了极大的污染[29]

    • 温度是影响排污口污水中微生物群落结构的主要因素[30-31]。温度变化会直接影响微生物的生长、营养需求、酶活性和化学成分。一些排污口所在地区一年四季温度差异较大,导致其重要微生物群落结构也会发生季节性变化,Pachepsky Y A等人指出大肠杆菌在海水中的失活率和温度呈正相关[32]。同样,温度也是海水中肠球菌浓度的重要影响因素,通常较温暖的气候(夏季)会导致肠球菌浓度的增加[33]。王中华等人通过对不同季节海水中分布的拟杆菌进行群落结构分析,认为温度的季节性变化会导致拟杆菌群落结构的变化[34]。也有研究指出夏季拟杆菌门中的黄杆菌(Flavobacterium)的浓度要远远高于春季,这说明其浓度与季节之间有很大联系。另一项研究表明,温度是影响创伤弧菌分布的主要因素,随着温度的升高,创伤弧菌的浓度增大。另外,通过纵向季节对比发现,创伤弧菌在细菌样品中的占比春夏季明显高于秋冬季[35]。Barril P A等人评估了气象因素对阿根廷科尔多瓦市的市政排污口污水中轮状病毒丰度和多样性的影响,结果表明当平均温度低于18 ℃时,轮状病毒浓度的峰值明显增高[36]

    • 光照对海洋环境中的细菌消亡具有重要作用,光照强度是影响细菌生存时间、传染性、持久性的重要因素[37-38]。由于某些细菌是厌氧的,因此对阳光照射下产生的活性氧更加敏感[39]。拟杆菌作为一种粪便指示菌广泛存在于排污口污水中,可以量化水生粪便的污染并评估公共健康风险,光照主要是通过杀死细胞和终止DNA维持机制,或直接通过光敏中间体破坏DNA模板,减少拟杆菌在污水中存在的时间或降低其在污水中的浓度[7,40]。日光暴露也是影响粪便污染指示菌早期衰减的重要因素,占该衰减变化的56%,但其影响随着时间的推移而减弱[41-43]。在研究不同纬度或不同地理位置排污口时,由于紫外线具有杀菌作用,不同光照时间及强度会导致微生物的群落结构及分布情况产生显著性差异。研究表明,紫外线会对海水中的肠球菌产生失活作用,长期受强光照射的入海排污口中肠球菌丰度会相对较低[42]。另一项研究指出海水中拟杆菌的浓度和分布会受到光照的影响,然而光照对靶向拟杆菌和肠球菌的分子标记的影响有所不同[44]。此外,Feitosa R C的研究发现大肠杆菌的衰变率和光照强度之间存在显著相关性,光照强度较弱时,脊髓灰质炎病毒、沙门氏菌等微生物的存活率会提高[42]

    • 盐度也是排污口污水中微生物丰度的重要影响因素之一,会影响微生物菌群的繁殖和生长速度[45-47]。盐度通过控制污水中捕食者或海洋微生物的活性来间接影响排污口微生物的浓度。在盐度较高的海水中,由于微生物细胞内外盐度差异产生渗透压,导致水从原生质流失到海洋环境导致细胞收缩,引起溶质现象。一项研究表明,创伤弧菌在排污口污水中的分布与其邻近海域的盐度之间存在显著正相关性。大肠杆菌与创伤弧菌类似,随着盐度的增加,大肠杆菌在污水中的浓度会呈增加趋势。同样,在低盐度下,拟杆菌在污水中的浓度呈现更快的下降趋势[48]。然而随着海水中盐度的升高,部分细菌裂解率增加。一项研究指出,在海水中肠球菌的浓度与盐度呈反比关系[49]。在温度较低的条件下,盐度的升高会导致污水中细菌衰变速率加快,导致细菌浓度降低。当光照强度较小时,细菌浓度与盐度呈反比[50],相关研究表明念珠菌、黄杆菌、绿藻弯曲菌、硝化螺旋菌和硬毛菌等细菌与盐度呈显著相关性[51-53]

    • 抗生素抗性基因(antibiotic resistance genes,ARGs)也是影响排污口污水中微生物群落结构的重要因素[54]。抗生素的低效降解会导致环境中产生抗药性细菌(ARB),ARGs的传播主要是水平基因转移所致。虽然废水处理可以减少大部分ARGs,但经过厌氧硝化污泥和活性污泥处理的去除效率较差,导致排污口污水中仍然有ARGs的存在。已鉴定出突柄杆菌属(Prosthecobacter)、固氮弧菌属(Azonexus)、长绳菌属(Longilinea)、副球菌属(Paracoccus)、新鞘氨醇杆菌属(Novosphingobium)和红细菌属(Rhodobacter)是排污口污水中潜在的四环素抗性细菌[55]。污水中抗生素的数量和种类决定了排污口污水中的细菌组成。在排放含青霉素的污水的排污口,污水中包括沙门氏菌、纤毛虫和梭状芽胞杆菌[56]。一项研究表明排污口污水中四环素、青霉素、磺酰胺、喹诺酮和三氯生的出现与ε-变形菌纲(ε-proteobacteria)的丰度呈正相关性,而与β-变形菌纲和γ-变形菌纲呈负相关性[57]

    • 不同海域的水动力条件不同,导致排污口污水中的微生物的扩散速率差异性较大,由于水深不同以及流速的差异等因素,入海污染物大量存在于近岸海域,导致其污染较为严重,并对养殖、旅游、浴场以及景观等不同的海洋功能区产生不良影响[58]。陆源入海排污口污水中微生物参与污染物的降解和转化过程,其数量及其代谢过程会对海水水质和海洋生物产生重要作用[59]。同时排污口污水中含有超过50种微生物,大量异源微生物入侵海洋也会影响海洋生态环境,造成海水养殖方面的损失[19]

      微生物学指标通常作为各国海水水质监测的重要指标之一[60]。我国《海水浴场环境监测与评价技术规程》规定,将粪大肠菌群及肠球菌作为微生物评价指标[61]。2013年-2017年我国历年均有75%以上的排污口邻近海域水质等级为第四类或劣于第四类。我国于2017年对80余个排污口邻近海域水质进行监测,结果显示,88%的排污口邻近海域的水质不能满足所在海洋功能区水质要求,排污口邻近海域中粪大肠菌群等含量超标[2]。一项研究指出粪大肠菌群在执行一级、二级排放标准的排污口均属于超标污染物,在一级排放标准的排污口中,粪大肠菌群超标2.3~48倍,最高点位出现在5月和7月;在二级排放标准的排污口中,粪大肠菌群超标15~7899倍,最高值出现在10月和7月[62]

      世界卫生组织(WHO)于2009年公布的《安全再生水环境准则》规定将肠球菌和大肠杆菌定为水质评价的微生物指标[63]。苏格兰当前水质标准中规定海水中大肠杆菌数≤2000个/100 mL,肠球菌数<200个/100 mL。美国环境保护署(EPA)将大肠杆菌、肠球菌等微生物指标应用于《沿海休闲海水水质标准》,该标准将大肠杆菌数≤235 CFU/100 mL,肠球菌数≤70CFU/100 mL作为接触海水人群的疾病发生率标准[64]。国外陆源入海排污口中的微生物同样会对排污口邻近海域产生重要影响。欧盟于2005年发布的《海洋战略框架指令》指出,排污口污水中的微生物会引起邻近海域的污染物营养富集和海水浊度变化[3]。国外学者对萨尔瓦多海岸的Rio Vermelho排污口进行了分析,结果表明,海水中的悬浮颗粒有机物被污水中的δ15N耗尽,海水中的溶解氧(DO)浓度较低(201.80 μmol O2/L),并且污水与周围海水混合,导致附近海域表层海水中微生物具有较高活性和有机物的快速分解等现象[65]

    • 2017年《中国海洋生态环境状况公报》数据显示,我国67%的排污口邻近海域贝类生物质量不能满足所在海洋功能区生物质量要求[2]。我国海洋生态系围隔实验组通过研究厦门排污口沉积物对浮游生物群体的影响,发现在受污染海域中,由于沉积物的消光作用,使浮游植物的光合作用减弱,硅藻的数量明显减少,而污水中的海洋细菌、微型鞭毛藻、浮游动物等变化不大[66]。黄德铭等人对排污口邻近海域小型底栖生物进行调查,结果显示:小型底栖生物在丰度和生物量上呈现明显的季节变化,且小型底栖生物丰度和生物量与沉积物中值粒径和有机质含量呈极显著负相关[67]。于潇等人于2015年对排污口附近大型底栖生物的多样性和群落结构进行研究,结果表明:大型底栖生物的平均生物量随着与排污口的距离增加,呈现出先增加后减小的趋势,且其群落结构和优势种组成呈现出显著的变化,同时污水排海会导致沉积物有机质含量增加,从而对大型底栖动物产生影响[68]

      陆源入海排污口污水排入邻近海域后,大量的异源微生物可抑制浮游生物、大型藻类以及水生植物的初级生产力,并对海洋底栖生物群落产生不利影响,同时影响了邻近海域海洋生物健康和水生生物食物链[69]。自生和异源微生物群落通过呼吸作用氧化污水中提供的过量有机物,直到底栖环境中的溶解氧耗尽为止,此后有机物通过发酵和厌氧过程降解,在厌氧沉积物中产生H2S和CO2,形成了对大型微藻类和动物的有毒环境,并以硫化黑铁(FeS2)的形式沉淀[70]

      陆源入海排污口污水中的微生物不仅会对海水中的浮游生物以及底栖生物造成影响,还会对食物链中的消费者产生危害作用。Rake等人对排污口附近海域的悉尼岩蚝(Sydney Rock Oyster,SRO)中感染的诺如病毒和大肠杆菌进行分析,结果表明,排污口污水中的诺如病毒和大肠杆菌在牡蛎体内大量积累,并且随着离岸距离的增大,大肠杆菌浓度的降低幅度大于诺如病毒浓度(20.1% /km;5.8% /km),这反映了诺如病毒在生物体中的稳定性高于大肠杆菌[71]。一项对南极入海排污口氮稳定同位素的分析表明,排污口污水会对邻近海域包括次级消费者(掠食性腹足动物和鱼类)在内的食物链产生影响。靠近排污口的鱼类(Trematomus bernacchii)是南极沿海生态系统中的顶级捕食者,对排污口500 m以内的鱼类进行随机采样,发现其组织病理学异常严重,病发率较高,排污口附近的掠食性腹足纲新食虫中显著富集了15 N,大型迁徙野生动植物(海豹和企鹅)以及底栖无脊椎动物与戴维斯排污口排放的污水接触,导致其体内聚集大量微生物,危害海洋生物的健康[72]。另一项研究发现,戴维斯海滩附近的野生生物与排放的污水直接接触,其污水中微生物浓度为100~10,000 CFU/100 mL之间,导致在海水中活动的的海象、韦德尔海豹和阿德利企鹅体内聚集大肠杆菌、肠球菌和粪大肠菌群等多种微生物[73]。国外学者对McMurdo排污口附近大型动物群落研究发现,污水中的微生物会导致生物多样性和丰度下降,尤其是多毛动物的优势地位出现下降现象[74]

    • 陆源入海排污口的排放问题以及对生态环境影响的研究已经成为全球范围内不可忽视的问题,排污口污水中微生物会影响海水水质,进而影响近岸海域甚至远海的生态环境,对海洋生态健康造成威胁。因此,研究并且处理排污口污水中的微生物对于污染治理和生态保护具有重要意义。目前,国内外学者在陆源入海排污口安全领域开展了一系列工作。相关研究人员已经发现大肠杆菌在排污口附近的分布规律,并以此来评价污水排放对沿岸人群健康的影响,此外还涉及排污口位置选择对海水中微生物扩散的影响,排污口附近总异养菌、总大肠杆菌、粪大肠菌群的检测以及新的病原指示菌的探究等工作。但这些研究也存在明显的不足,目前选取的微生物指标为微生物总量和几种指示微生物,如大肠杆菌、肠球菌等,对其他微生物的研究甚少;缺乏对微生物动态分布与生态因子的相关性方面的研究,如排污口污水与海水的混合作用及海洋微生物群落结构对微生物分布的影响,对海洋生物健康潜在危害缺乏定量危险评估。我国针对陆源入海排污口的研究主要局限于排污口污水排海后对海水水质的影响、模拟和预测等方面, 对微生物功能代谢机理以及病理特性等方面的研究甚少。目前对陆源排污口不同方式排海后的微生物群落结构扩散规律和致病菌的生物安全进行追踪是相关研究热点,并且我国在这方面的研究比较滞后,期待通过更先进的技术对这方面进行更加深入地探索。

参考文献 (74)

目录

    /

    返回文章