• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X

春季和秋季东海挥发性卤代烃的时空分布与海−气通量研究

张逸青, 何真, 尹丽菁, 李磊, 杨桂朋

张逸青, 何真, 尹丽菁, 李磊, 杨桂朋. 春季和秋季东海挥发性卤代烃的时空分布与海−气通量研究[J]. 海洋环境科学, 2024, 43(1): 12-26, 36. DOI: 10.12111/j.mes.2023-x-0043
引用本文: 张逸青, 何真, 尹丽菁, 李磊, 杨桂朋. 春季和秋季东海挥发性卤代烃的时空分布与海−气通量研究[J]. 海洋环境科学, 2024, 43(1): 12-26, 36. DOI: 10.12111/j.mes.2023-x-0043
ZHANG Yiqing, HE Zhen, YIN Lijing, LI Lei, YANG Guipeng. Spatial and temporal distribution and sea-to-air fluxes of volatile halocarbons in the East China Sea in spring and autumn[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 12-26, 36. DOI: 10.12111/j.mes.2023-x-0043
Citation: ZHANG Yiqing, HE Zhen, YIN Lijing, LI Lei, YANG Guipeng. Spatial and temporal distribution and sea-to-air fluxes of volatile halocarbons in the East China Sea in spring and autumn[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 12-26, 36. DOI: 10.12111/j.mes.2023-x-0043

春季和秋季东海挥发性卤代烃的时空分布与海−气通量研究

基金项目: 国家自然科学基金重点项目(41830534);国家自然科学基金面上项目(42276039);山东省自然科学基金(ZR2021MD034)
详细信息
    作者简介:

    张逸青(1998-),女,山东枣庄人,硕士,研究方向为海洋中的挥发性卤代烃,E-mail:zhangyqouc@163.com

    通讯作者:

    杨桂朋,男,教授,博士生导师,主要研究方向为海洋活性气体的生物地球化学,E-mail:gpyang@mail.ouc.edu.cn

  • 中图分类号: P734.4

Spatial and temporal distribution and sea-to-air fluxes of volatile halocarbons in the East China Sea in spring and autumn

  • 摘要:

    海洋中挥发性卤代烃(VHCs)的产生和释放在调节全球气候方面发挥着至关重要的作用。本研究分别于2021年4月1日至19日搭乘“向阳红18号”科考船和2021年10月9日至30日搭乘“东方红3号”科考船对东海海域进行了大面积调查,探讨了春季和秋季东海海水和大气中CFC-11(一氟三氯甲烷)、CH3Br(溴甲烷)、CH3I(碘甲烷)和CH2Br2 (二溴甲烷)4种VHCs的时空分布及其影响因素,并对海水和大气中VHCs的分布和海−气通量进行了季节对比。结果表明,受气团来源、海表温度、水团、生物释放和河流输入的影响,VHCs在大气和海水中的分布呈现显著的季节变化。表层海水中VHCs的浓度高值主要出现在闽浙沿岸和东部外海某些站位。CFC-11的分布主要受油气开采平台和陆源气团输送的影响。浮游植物释放是秋季表层海水CH2Br2的主要来源,而CH3I主要受到河流输入和海表温度的影响。大气中CH3Br和CH3I在两个季节均呈现显著正相关性。春季CFC-11、CH3Br、CH3I和CH2Br2的海−气通量平均值分别为−535.17 nmol/(m2∙d)、10.17 nmol/(m2∙d)、16.69 nmol/(m2∙d)和24.18 nmol/(m2∙d),秋季分别为−1621.03 nmol/(m2∙d)、41.96 nmol/(m2∙d)、94.32 nmol/(m2∙d)和57.23 nmol/(m2∙d),表明东海是大气中CFC-11的汇,是CH3Br、CH3I和CH2Br2的源。较低的海水温度导致春季CFC-11的海−气通量比秋季高,较高的风速和表层海水浓度是CH3Br、CH3I和CH2Br2秋季海−气通量高于春季的主要原因。

    Abstract:

    The production and release of volatile halogenated hydrocarbons (VHCs) in the ocean play a crucial role in regulating global climate. The extensive voyage surveys in the East China Sea were conducted on board the R/V “Xiangyanghong 18” from April 1 to 19, 2021 and on board “Dongfanghong 3” from October 9 to 30, 2021. This study conducted the temporal and spatial distributions of 4 VHCs including Trichlorofluoromethane (CFC-11), bromomethane (CH3Br), iodomethane (CH3I), and dibromomethane (CH2Br2) in the seawater and atmosphere of the East China Sea in spring and autumn, and the environmental parameters affecting their concentrations were also studied. The distribution of VHCs in seawater and atmosphere and the sea-to-air fluxes were compared seasonally. The results showed that the distributions of VHCs in the atmosphere and seawater exhibited significant seasonal changes, which were influenced by the source of air mass, sea surface temperature, water mass, seasonal differences in biological release, and river input. The high concentrations of VHCs in surface seawater mainly appeared in the coastal waters of Fujian and Zhejiang provinces and some stations in the open sea. The distribution of CFC-11 was mainly affected by oil and gas production platform and terrigenous air mass transportation. Phytoplankton release was the main source of CH2Br2 in autumn surface seawater, while CH3I was mainly affected by river input and sea surface temperature. Atmospheric CH3Br and CH3I showed a significant positive correlation in both seasons. The mean sea-to-air fluxes of CFC-11, CH3Br, CH3I and CH2Br2 in spring were −535.17, 10.17, 16.69 and 24.18 nmol/(m2∙d), respectively, while those in autumn were −1621.03, 41.96, 94.32 and 57.23 nmol/(m2∙d). These results indicated that the East China Sea was the sink of CFC-11 in the atmosphere but the source of CH3Br, CH3I and CH2Br2. Lower sea temperature led to higher sea-to-air flux of CFC-11 in spring than in autumn, and higher wind speed and surface seawater concentration were the main reasons for the higher sea-to-air fluxes of CH3Br, CH3I and CH2Br2 in autumn than in spring.

  • 挥发性卤代烃(VHCs)是一类重要的臭氧消耗物质,是环境中活性卤素的来源。VHCs一旦进入空气,可以通过释放无机卤素增强平流层臭氧损耗,并作为前体物质促进凝云结核(CCN)的形成[1-2],显著影响全球气候。一氟三氯甲烷(CFC-11)是被广泛用作工业产品中的制冷剂、发泡剂的人为源卤代烃,是极地臭氧消耗最主要的贡献者[3],因而受到《蒙特利尔议定书》的管制[4]。最新的研究报道,2012年以后全球CFC-11水平下降减缓,直至2018年才有所回升,这可能是因为受到个别区域意外排放的影响[5-6]。浮游植物在海洋中分布广泛,被认为是大洋中生源VHCs的主要来源,如CH3Br(溴甲烷)、CH3I(碘甲烷)和CH2Br2(二溴甲烷)[7]。大型藻类在沿海地区受人为活动影响得以快速增长,对近岸VHCs释放的贡献较大[8]。此外,Richter和Wallace[9]根据大西洋开展的培养实验结果提出,光化学合成释放也是CH3I产生的重要途径。

    东海是中国的大型陆架边缘海,该海域受到长江冲淡水、闽浙沿岸流、台湾暖流和黑潮等多个水团的综合影响,各水团流速和流量随季节更替表现出明显的变化,并在西部近岸存在多处上升流[10]。同时,该海域紧邻中国经济最发达的几个省份,复杂的环境因素可能会对其VHCs的源−汇平衡产生重要影响,进而影响大气中VHCs的估算。本研究旨在通过测定2021年春季、秋季东海大气和表层海水中CFC-11、CH3I、CH3Br、CH2Br2的浓度分布和海−气通量,加深对中国在《蒙特利尔议定书》管制下CFC-11排放的了解,并对该区域海洋VHCs排放和吸收的数据实时更新,补充全球VHCs的数据库,进而为评估VHCs的释放对全球环境和气候变化的影响提供科学依据。

    本研究先后于2021年4月1日至19日(春季)搭载“向阳红18号”科考船和2021年10月9日至30日(秋季)搭载“东方红3号”科考船对东海海域进行了两次调查,分别设置海水采样站位36个和33个,大气采样站位10个和22个(表1)。海水样品使用安装在Seabird 911 CTD传感器上的12 L Niskin采水器采集,由CTD探头同时测量海水的物理参数(如温度、盐度和深度)。海水样品取样时先用海水将样品瓶润洗3次,再将硅胶管伸入样品瓶底部使海水缓慢注入,避免产生气泡和旋涡,然后滴加1 ~ 2滴饱和叠氮化钠抑制生物活性,随后立即进行压盖密封,并在4 ℃避光保存。大气样品使用3 L苏玛罐收集,停船前在甲板上的迎风处采集空气样品,以避免发动机排气污染。在航行结束后所有样品带回实验室一个月内完成测定分析[11-12],具体方法见文献[13]。

    表  1  2021年春季和秋季东海采样站位
    Tab.  1  Sampling stations in the East China Sea in spring and autumn 2021
    春季站位经度/°E纬度/°N秋季站位经度/°E纬度/°N
    S01-1*122.7030.00S01-1*122.7030.00
    S01-3123.5030.00S01-3*123.7030.00
    S01-5*124.3030.00S01-4*124.2030.00
    S01-7125.1029.99S01-5124.6930.00
    S01-9*125.8930.00S01-6125.1929.99
    S02-1122.8129.63S01-7*125.6929.99
    S02-3123.3729.32S01-8*126.2130.00
    S02-4*123.6529.17S01-10*127.2030.00
    S02-5123.9429.02S02-1*122.8029.59
    S02-6124.2128.87S02-2123.2329.37
    S02-7124.5128.72S02-3*123.6529.15
    S02-8*124.7828.57S02-4*124.0828.92
    S03-1*122.2828.63S02-5*124.5028.70
    S03-2122.5828.47S02-8*125.7828.02
    S03-3122.8828.31S02-9*126.2027.80
    S03-4123.1828.16S03-1*122.3028.60
    S03-5*123.4828.00S03-2122.6928.37
    S03-6123.7827.84S03-3*123.0828.15
    S04-1121.6327.80S03-5*123.8527.70
    S04-2121.9027.63S03-6124.2427.47
    S04-3122.1727.45S03-7*124.6327.25
    S04-4*122.4327.28S03-8125.0127.02
    S04-5122.7027.10S04-1*121.6527.80
    S05-1*120.9627.00S04-2121.8827.65
    S05-2121.2326.82S04-4*122.3627.35
    S05-3121.5326.63S04-6*122.8327.06
    S05-4121.8226.45S04-8*123.3226.76
    S05-5122.1226.27S12-1126.8228.99
    S05-6*122.4226.09S05-1120.9927.00
    S12-2125.3429.28S05-2*121.3226.81
    S12-3125.0628.92S05-4*121.9926.40
    S23-1124.4528.34S05-5122.3226.20
    S23-2124.1228.09S05-6122.6526.00
    S34-1123.4327.60
    S34-2123.0727.35
    S45-1122.3926.68
    注:*表示在该站位同时进行大气样品采样
    下载: 导出CSV 
    | 显示表格

    大气样品使用自动预浓缩系统(Nutech 8900DS, USA)与气相色谱−质谱联用仪(GC-MS,Agilent 7890A/5975C, USA)进行测定。将300 mL空气样品从抽空的苏玛罐中抽入预浓缩系统,通过三级冷阱去除O2、CO2和H2O等气体,并对目标VHCs进行浓缩,浓缩后的样品进入GC-MS中进行分析测定,该方法使用的毛细管柱型号是DB-624 (60 m × 0.25 mm × 1.4 μm)。通过保留时间和峰面积与校准标准(VHCs混合气体标准浓度为0.1 ppm,美国Spectra Gases公司)进行比较,对目标化合物进行鉴定和定量。CFC-11、CH3Br、CH3I和CH2Br2的保留时间分别为9.26 min、7.94 min、11.82 min、22.45 min。本研究使用的方法检测限为0.02 ~ 0.50 pptv,精密度是1% ~ 6%,具体方法见文献[14]。

    海水样品使用吹扫−捕集系统结合电子捕获检测器(ECD)的气相色谱仪(岛津GC-2030)进行分析。用气密性注射器将50 mL海水样品注入玻璃气提室,用高纯氮气吹扫VHCs。去除CO2和H2O后将目标气体通过浸入液氮的不锈钢管路吹扫14 min,将气体捕获在不锈钢管中,然后将不锈钢管浸入沸水中快速加热,立即重新打开六通阀,来自气相色谱的载气携带待测气体进入气相色谱仪,经色谱柱实现分离,并最后通过ECD完成测定。该方法使用的毛细管柱型号是DB-624 (60 m × 0.53 mm × 3 μm)。通过保留时间和峰面积与校准标准(VHCs液体混合标准样品浓度为4 mg/L,美国o2si公司)进行比较,对目标化合物进行鉴定和定量。CFC-11、CH3Br、CH3I和CH2Br2的保留时间分别为6.02 min、5.38 min、7.80 min、14.49 min。该方法的检测限为0.01~0.22 pmol/L,精密度是1.83%~3.97%,具体方法见文献[11]。

    用于测定Chl a的海水样品(300 mL)使用47 mm的Whatman GF/F滤膜在低真空下抽滤。过滤后将滤膜于−20 ℃条件下冷冻保存。带回实验室后将滤膜浸泡在10 mL的90%丙酮中,在−20 ℃条件下黑暗萃取24 h后进行离心提取(转速为4000 r/min,时间为10 min)。根据Parsons等[15]的报道,用F-4500荧光计(日本日立)测定Chl a。Chl a浓度的测定精度为0.001 μg/L。

    用于测定营养盐(NH4+、PO43−、NO3、NO2和SiO32−)的海水样品(100 mL)装入3.6%盐酸浸泡24 h以上清洗过的聚乙烯瓶中在−20 ℃条件下冷冻保存。使用Technicon AA3自动分析仪进行分析,具体方法见文献[16]。

    本文根据Liss和Slater[17]提出的方程依据两个航次的表层海水和大气中VHCs浓度计算了CFC-11、CH3Br、CH3I和CH2Br2的海−气通量:

    $$ F = K_{w} (C_{w} - C_{a}/H) $$ (1)

    式中:F是海−气通量[nmol/(m2∙d)];Cw(pmol/L)和Ca(pmol/L)分别表示海水和大气中VHCs的浓度;Kw是气体交换常数,是风速u(m/s)和气体施密特常数Sc的函数。本研究采用国际上较为常用的Wanninkhof[18]提出的公式计算:

    $$ K_{w} = (0.251 u^{2}) (Sc/660) ^{- 0.5} $$ (2)

    CFC-11、CH3Br、CH3I和CH2Br2Sc分别通过文献中的公式计算得到[19-22]H表示亨利常数,CFC-11的H由Warner和Weiss[23]的公式计算得到,CH3Br的H用De Bruyn和Saltzman[19]在1997年提出的公式计算得到(公式3),CH3I、CH2Br2H根据Moore等[24]提出的公式计算得到(公式4和公式5),其中T表示每个采样站位海水表层温度,单位是开尔文(K),S表示盐度。

    $$ \begin{split} &{\rm{CH}}_{3}{\rm{Br}}: {\rm{ln}} H = - 171.2 + 77.04 {\rm{ln}} (T/100) \\ &+ S[0.2591 - 0.1828(T/100) + 0.03142(T/100)^{2}] \end{split}$$ (3)
    $$ {\rm{CH}}_{3}{\rm{I}}: {\rm{ln}} H = 13.32 - 4338/T $$ (4)
    $$ {\rm{CH}}_{2}{\rm{Br}}_{2}: {\rm{ln}} H = 11.7 - 4418/T $$ (5)

    调查海域各站位春季和秋季温度、盐度和Chl a浓度水平列于表2。春季航次平均温度、盐度和Chl a浓度分别为16.49 ℃、32.85和2.74 μg/L;秋季航次的平均温度、盐度和Chl a浓度分别为26.03 ℃、32.70和0.67 μg/L。受东亚季风、人类活动以及河流和水团径流量的共同影响,本研究的两个航次中东海的水文特征均表现出明显的季节性变化。春季温度低于秋季。黑潮上升流和台湾暖流在研究海域汇合,使得两个季节高温和高盐区均出现在调查海域的东部和南部[25]。秋季长江冲淡水径流量更大,导致秋季东海的低盐区范围更广,从长江口至东南方向形成明显的盐度梯度。Chl a浓度春季高于秋季,与往年邻近海域的调查结果一致[26],可能是由春季的光照强度更强导致的。春季,Chl a浓度的高值区主要集中在闽浙沿岸和东部远海的局部站位,东部远海受黑潮上升流的作用将次表层营养盐涌动至表层[27],为浮游植物的生长提供了有利条件。秋季,Chl a浓度的分布与盐度呈相反趋势,相关性分析发现(表3表4),秋季Chl a水平与盐度呈显著负相关性(r = −0.575,P < 0.01),表明长江冲淡水和沿岸河流的输送对浮游植物的生长产生了明显的促进作用。秋季温度与营养物质呈显著负相关性(SiO32−r = −0.785,P < 0.01;NO3r = −0.679,P < 0.01)。Liu等[28]的报道表明,营养盐可作为河流输入的指征,说明秋季东海表层海水的温度可能受到较冷的河流输入的影响。春季和秋季的营养物质与Chl a浓度无显著正相关性(P > 0.05),但和盐度表现出显著负相关性(PO43−、SiO32−和NO3),表明河流输入是营养物质的主要来源但不是初级生产力的限制条件。

    表  2  春季和秋季东海表层海水中温度、盐度和Chl a浓度水平
    Tab.  2  Temperature, salinity and Chl a concentration levels in the surface waters of the East China Sea in spring and autumn
    春季站位Chl a/μg∙L−1盐度温度/℃秋季站位Chl a/μg∙L−1盐度温度/℃
    S01-12.0330.7315.3S01-12.9628.9926.2
    S01-30.8134.2316.3S01-30.4131.7826.8
    S01-50.5534.0114.9S01-40.3832.1227.1
    S01-70.8834.1013.7S01-50.3332.6627.0
    S01-91.8534.2315.8S01-60.2933.1527.3
    S02-11.5329.2416.8S01-70.7433.2726.1
    S02-31.1833.1120.3S01-80.5433.4725.0
    S02-43.0033.2516.3S01-100.4633.8226.4
    S02-51.8333.7216.8S02-11.5429.6626.5
    S02-63.9532.6517.3S02-22.3130.9527.0
    S02-72.7734.1817.6S02-31.0231.2327.3
    S02-87.4233.0816.9S02-40.9231.0927.1
    S03-13.3229.7216.0S02-50.3532.7627.5
    S03-21.7732.0115.2S02-80.3434.1226.1
    S03-31.8232.4916.2S02-90.3034.0626.2
    S03-43.4832.0217.6S03-10.9230.7025.3
    S03-514.4731.8716.7S03-20.5633.7326.6
    S03-62.0932.8116.4S03-30.5332.8326.5
    S04-14.8029.5915.6S03-50.3633.7426.7
    S04-21.7331.5917.0S03-60.5133.7926.8
    S04-32.1334.1217.0S03-70.7333.2926.1
    S04-41.4534.1317.1S03-80.3534.0426.3
    S04-51.8034.0417.0S04-10.3729.4723.1
    S05-13.0530.3316.6S04-20.4033.0924.4
    S05-25.1931.0016.1S04-40.4433.1524.6
    S05-35.0032.9816.1S04-60.8834.0723.8
    S05-43.2533.3917.2S04-80.9234.0624.8
    S05-51.9034.3218.8S12-10.2634.2027.4
    S05-60.5134.3119.5S05-10.3729.5823.1
    S12-21.0934.4814.5S05-20.3033.8325.1
    S12-31.0534.5014.6S05-40.6434.1125.0
    S23-12.2233.7616.1S05-50.4034.1326.8
    S23-22.5433.0613.9S05-60.2734.1827.1
    S34-11.8433.4416.8
    S34-22.6132.7216.4
    S45-11.7133.4517.1
    下载: 导出CSV 
    | 显示表格
    表  3  春季表层海水中环境参数间的相关性
    Tab.  3  Correlation between environmental parameters in spring surface seawater
    变量Chl a温度盐度PO43−NH4+SiO32−NO3NO2
    Chl a10.031−0.319−0.1510.2450.223−0.034−0.226
    温度10.074−0.2470.033−0.254−0.24−0.192
    盐度1−0.343*−0.261−0.787**−0.787**−0.173
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV 
    | 显示表格
    表  4  秋季表层海水中环境参数间的相关性
    Tab.  4  Correlation between environmental parameters in autumn surface seawater
    变量Chl a温度盐度PO43−NH4+SiO32−NO3NO2
    Chl a10.071−0.575**−0.187−0.019−0.22−0.0950.078
    温度10.17−0.629**−0.062−0.785**−0.679**−0.442*
    盐度1−0.346*−0.212−0.272−0.554**−0.339
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV 
    | 显示表格

    调查海域各站位春季和秋季表层海水中CFC-11、CH3Br、CH3I和CH2Br2的浓度列于表5。本研究中4种VHCs的浓度均在往年文献报道的范围内(表6)。春季CFC-11的浓度高于秋季,可能与春季的水温低、CFC-11在海水中的溶解度高有关。秋季CFC-11的浓度略高于同季节南海的平均值[29],推测东海CFC-11的污染程度比南海更高。表层海水中CH3I和CH3Br的平均浓度秋季均高于春季,与Zou等[30]在长江口的航次调查结果一致,这是因为CH3I和CH3Br在海水中主要由浮游植物释放产生,而秋季长江冲淡水和闽浙沿岸流径流量更大,河流输送的营养物质会改变浮游生物的群落结构,从而影响其VHCs的释放量[31],同时更高的水温也对生物释放VHCs有促进作用。秋季该海域CH3Br的浓度比南海和长江口的海水浓度更高[26,29]

    表  5  春季和秋季东海表层海水中4种VHCs的浓度(pmol/L)
    Tab.  5  Concentrations of 4 VHCs (pmol/L) in surface waters of the East China Sea in spring and autumn
    春季站位CFC-11CH3BrCH3ICH2Br2秋季站位CFC-11CH3BrCH3ICH2Br2
    S01-12.295.011.678.60S01-11.483.695.436.03
    S01-39.473.942.263.45S01-32.2712.633.332.53
    S01-55.034.412.672.82S01-41.388.103.403.25
    S01-710.170.232.862.94S01-54.2911.043.963.79
    S01-910.603.993.633.90S01-65.648.6210.824.74
    S02-13.976.882.365.71S01-711.222.563.593.31
    S02-38.322.261.124.32S01-84.973.023.324.00
    S02-45.055.421.454.18S01-107.912.723.592.53
    S02-59.250.241.855.32S02-11.987.097.655.17
    S02-64.631.862.555.69S02-25.526.676.085.43
    S02-75.640.902.433.88S02-31.8913.904.763.97
    S02-88.743.411.363.48S02-42.5223.929.564.27
    S03-12.288.691.247.09S02-57.1011.975.802.86
    S03-24.510.422.715.68S02-89.980.006.742.33
    S03-33.740.142.103.06S02-914.341.873.862.94
    S03-45.772.123.064.32S03-112.768.904.988.23
    S03-56.453.902.215.19S03-210.578.494.734.00
    S03-620.090.182.653.46S03-37.514.134.154.83
    S04-12.225.612.237.66S03-56.967.484.313.75
    S04-22.320.221.505.41S03-67.7517.643.593.99
    S04-37.183.282.803.16S03-79.395.655.983.62
    S04-43.050.331.422.76S03-82.7511.704.001.69
    S04-525.476.402.714.62S04-113.985.568.093.55
    S05-18.749.691.8713.69S04-27.427.7422.106.00
    S05-24.393.771.598.20S04-45.9515.055.294.42
    S05-36.715.323.904.74S04-66.540.024.833.40
    S05-47.174.452.165.05S04-86.358.714.092.67
    S05-55.4411.302.423.52S12-116.663.874.832.42
    S05-65.344.972.102.51S05-16.8110.888.973.27
    S12-22.191.202.125.10S05-28.324.509.546.40
    S12-37.285.512.304.52S05-49.1111.696.353.25
    S23-137.780.172.213.57S05-56.232.268.072.66
    S23-213.404.793.504.48S05-62.924.468.262.54
    S34-14.0412.121.684.29     
    S34-29.9712.162.593.43     
    S45-111.370.352.114.67     
    下载: 导出CSV 
    | 显示表格
    表  6  中国近海不同季节表层海水中CFC-11、CH3Br、CH3I和CH2Br2的浓度(pmol/L)
    Tab.  6  Concentrations of CFC-11, CH3Br, CH3I, and CH2Br2 (pmol/L) in the surface waters of the coastal China Seas in different seasons
    季节海域CFC-11CH3BrCH3ICH2Br2来源
    春季2015长江口13.9(6.7 ~ 23.0)6.3(3.4 ~ 10.1)6.0(1.9 ~ 11.1)[26]
    2017东海8.1(1.8 ~ 22.6)6.3(1.8 ~ 13.0)[32]
    2018长江口5.76(2.58 ~ 14.34)5.38(0.74 ~ 17.99)[45]
    2020长江口5.88(0.97 ~ 24.4)8.44(0.59 ~ 25.4)[30]
    2021东海8.06(2.19 ~ 37.78)4.05(0.14 ~ 12.16)2.26(1.12 ~ 3.90)4.85(2.51 ~ 13.69)本文
    秋季2018长江口5.22(1.66 ~ 22.76)15.91(7.85 ~ 44.45)[46]
    2019长江口7.19(1.1 ~ 43.8)6.22(0.93 ~ 18.2)[30]
    2020南海5.35(0.46 ~ 17.82)1.26(0.02 ~ 2.63)2.58(1.28 ~ 5.17)[29]
    2021东海6.98(1.38 ~ 16.66)7.77(0.22 ~ 23.92)6.18(3.32 ~ 22.10)3.87(1.69 ~ 8.23)本文
    冬季2019黄东海2.73(0.21 ~ 9.29)2.96(1.55 ~ 9.19)[47]
    下载: 导出CSV 
    | 显示表格

    春季表层海水中CFC-11的高值区主要分布于东部外海,CH3Br和CH2Br2呈现近岸高于远海的分布趋势,而CH3I呈现较为分散的斑块状分布特征。春季CFC-11的平均浓度与魏英等[32]2017年同海域的调查结果相近,最高值在S23-1站位,该站位CH3I浓度也较高(3.50 pmol/L)。刘树保等[33]的研究发现,大港油田上方大气中CFC-11的浓度高达1058 pptv,该站位可能受到附近春晓油田、平湖油田等正在开采的油气平台的影响[34-35],同时石油开采过程中产生的石油烃光解可以产生甲基自由基,促进了CH3I的光化学合成,影响了该区域VHCs的分布。CH3Br和CH2Br2春季在闽浙沿岸的表层海水中浓度较高,一方面,营养盐作为河流输入的指征[28],在S05-1站位SiO32−和NO3分别高达21.20 μmol/L和8.58 μmol/L,可能存在氯化消毒和海水冷却等陆源产生的CH2Br2汇入海洋[36-37];另一方面,海洋微藻是CH3Br的重要来源[7],沿岸Chl a浓度高,浮游植物释放量高导致较多的CH3Br产生。春季CH3I的另一个高值出现在离岸较远的S02-6和S01-9站位。S02-6站位温度较低而盐度较高,同时Chl a浓度(4.0 mg/L)较高。这可能是由于受到上升流的影响,次表层营养物质涌入促进了表层浮游植物的生长[27],从而促进了CH3I的释放。远海S01-9站位附近由于高温、高盐、寡营养盐的黑潮水侵入,Chl a水平较低,但该站位较低的浊度以及较高的温度和光照强度对CH3I的光化学合成反应有促进作用[38]

    秋季,东海表层海水中CFC-11、CH3I和CH2Br2的高值主要分布于沿岸海域。需要指出的是,CFC-11在东部外海存在局部高值。CH3Br的高值则主要分布于浙江东部海域S01-3、S02-4和S03-6站位,长江冲淡水和台湾暖流在该区域混合,导致海水温度和Chl a浓度较高,同时S02-4站位的CH3I也出现高值(9.56 pmol/L),可能是浮游植物的释放影响了此区域CH3I和CH3Br的浓度。秋季CH3I的最大值出现在闽浙沿海的S04-2站位。一方面,该站位Chl a水平较低(0.4 mg/L),但大型藻类如海带养殖等人类活动较强[39],推测该站位附近存在CH3I的大型藻类释放源。Lovelock等[40]研究发现,沿海CH3I的浓度高于大洋,随后一系列的研究均表明近岸海域中大型藻类释放是VHCs的重要释放源[8,41-42]。Manley等[43]的研究表明,单位大型藻类释放的CH3I是单位微藻的1 ~ 100倍。另一方面,Moore和Zafiriou[44]研究发现,在DOM含量高的沿海地区CH3I光化学生成速率可能比远海地区高6倍,光化学合成可能也是该站位CH3I的重要来源。近岸秋季CH2Br2的高值分布于长江口和闽浙沿岸附近,一方面长江冲淡水的输入带来的大量营养盐促进了浮游植物的生长和VHCs的释放;另一方面可能受到浙闽沿岸陆源排放的影响。

    为了进一步研究环境因素对海水中VHCs分布的影响,本研究使用SPSS 22.0(IBM Corp. USA)对VHCs和多个海洋学参数之间的相关关系进行了统计分析。相关性结果列于表7表8。两个季节表层海水中不同VHCs之间均未发现显著相关性。海洋微藻的释放是VHCs的主要来源[7],一些研究表明CH3I和CH2Br2与Chl a之间存在显著正相关性[48-49],但VHCs的微藻释放具有高度的物种特异性,在部分海域中与Chl a的相关性无法体现[50-51]。本研究中,秋季CH2Br2和Chl a呈现显著正相关性(r = 0.449,P < 0.01),说明秋季微藻释放是CH2Br2的主要来源,近岸海域的大型藻类释放和光化学反应的影响可能是导致CH3I与Chl a没有显著相关性的原因。河流输入的营养盐是初级生产者生长的必要物质,会间接地影响海水中VHCs的浓度[52]。CH2Br2与营养盐在两个季节均具有显著的正相关性。秋季CH3I与NO3也呈显著正相关性(r = 0.366,P < 0.05),表明河流输入对研究海域生源VHCs分布也具有显著影响。海表温度可以通过控制表层海水中的化学损失过程和生物过程来调节VHCs的浓度[50-51]。春季CH3I与东海的海水温度呈显著负相关性(r = 0.330,P < 0.05),随着温度的升高,CH3I在海水中的溶解度下降,化学损失过程增加,同时,硅藻的种类和数量也会下降,从而造成VHCs的生物释放量降低,因此温度也是影响春季东海CH3I分布的重要因素。

    表  7  春季表层海水中4种VHCs的浓度与环境参数的相关性
    Tab.  7  Correlation between the concentrations of 4 VHCs in surface seawater and environmental parameters in spring
    变量CFC-11/pmol∙L−1CH3Br/pmol∙L−1CH3I/pmol∙L−1CH2Br2/pmol∙L−1
    CFC-11/pmol∙L−11
    CH3Br/pmol∙L−1−0.1531
    CH3I/pmol∙L−10.24−0.021
    CH2Br2/pmol∙L−1−0.194−0.242−0.2421
    Chl-a/μg∙L−1−0.0760.061−0.040.203
    温度/℃−0.0390.092−0.330*−0.127
    盐度0.294−0.2260.247−0.706**
    PO43−/μmol∙L−10.134−0.1010.0460.29
    NH4+/μmol∙L−1−0.174−0.0490.190.195
    SiO32−/μmol∙L−1−0.2110.231−0.2470.776**
    NO3/μmol∙L−1−0.1790.264−0.2560.722**
    NO2/μmol∙L−10.025−0.011−0.0510.245
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV 
    | 显示表格
    表  8  秋季表层海水中4种VHCs的浓度与环境参数的相关性
    Tab.  8  Correlation between the concentrations of 4 VHCs in surface seawater and environmental parameters in autumn
    变量CFC-11/pmol∙L−1CH3Br/pmol∙L−1CH3I/pmol∙L−1CH2Br2/pmol∙L−1
    CFC-11/pmol∙L−11
    CH3Br/pmol∙L−1−0.361*1
    CH3I/pmol∙L−1−0.0160.0561
    CH2Br2/pmol∙L−1−0.0070.0760.3431
    Chl-a/μg∙L−1−0.326−0.037−0.0710.449**
    温度/℃−0.2680.170−0.270−0.147
    盐度−0.265−0.239−0.113−0.455**
    PO43−/μmol∙L−10.240−0.0730.091−0.039
    NH4+/μmol∙L−10.147−0.036−0.137−0.001
    SiO32−/μmol∙L−10.427*−0.1230.1760.050
    NO3/μmol∙L−10.2960.0290.1660.149
    NO2/μmol∙L−10.2710.1430.366*0.643**
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV 
    | 显示表格

    本研究测定的CFC-11、CH3Br、CH3I和CH2Br2大气浓度平均值和往年文献报道的结果列于表9。CFC-11在本研究海域大气中的浓度季节性变化相对较小,同往年相比呈现下降趋势,远低于2019年冬季黄海、东海的结果,与WMO报道的变化趋势一致[53],说明近年来中国CFC-11的排放量有所降低。秋季大气中CH3Br的浓度高于南海和长江口的调查结果[26,29],这与表层海水中的浓度相对应。CH3I和CH2Br2的大气浓度春季高于秋季,与Zou等[30]在长江口调查的趋势相反,可能是由于复杂的气团来源和表层海水的浓度差异导致的。

    表  9  中国近海不同季节大气中CFC-11、CH3Br、CH3I和CH2Br2的浓度(pptv)
    Tab.  9  Atmospheric concentrations of CFC-11, CH3Br, CH3I and CH2Br2 (pptv) in different seasons over the coastal China Seas
    季节海域CFC-11CH3BrCH3ICH2Br2来源
    春季2015长江口206.3(199.0 ~ 215.9)8.8(3.9 ~ 12.9)0.7(0.1 ~ 1.6)[26]
    2017东海219.5(185.9 ~ 259.8)4.5(2.2 ~ 13.4)[32]
    2018长江口1.1(0.3 ~ 3.7)1.7(0.9 ~ 6.1)[45]
    2020长江口234.1(199.0 ~ 257.7)0.6(0.1 ~ 1.5)1.1(0.6 ~ 1.6)[30]
    2021东海197.7(184.8 ~ 211.9)12.3(1.5 ~ 49.8)1.3(0.1 ~ 5.4)1.3(0.8 ~ 2.1)本文
    秋季2019长江口228.9(163.1 ~ 339.2)1.5(0.8 ~ 2.5)3.1(2.3 ~ 4.1)[30]
    2020南海184.1(118.6 ~ 242.4)9.2(2.7 ~ 4.3)1.1(0.6 ~ 2.6)[29]
    2021东海206.8(159.8 ~ 213.0)14.0(7.7 ~ 60.0)0.9(0.3 ~ 3.9)0.5(0.1 ~ 1.8)本文
    冬季2019黄东海260.7(214.9 ~ 374.2)0.6(0.2 ~ 2.8)1.2(0.4 ~ 2.2)[47]
    下载: 导出CSV 
    | 显示表格

    调查海域各站位春季和秋季大气中CFC-11、CH3Br、CH3I和CH2Br2浓度列于表10。春季闽浙沿岸的S05-1站位4种VHCs的大气浓度均较高。从72 h后向轨迹图可以看出(图1),该站位的中高空气团起源于南海,有研究表明发源于南海的气团中生源VHCs浓度高于其他来源的气团[54]。此外,低空气团则在闽浙沿岸的Chl a高值区低速盘旋,长时间的积累可以将沿岸浮游植物产生的VHCs携带至该站位。表层海水中CH3Br和CH2Br2的浓度也较高,分别为9.69 pmol/L和13.69 pmol/L,有利于其从海水向大气中释放。气团输送和海−气释放的共同影响使该站位大气中生源VHCs的浓度较高。S05-1站位的气团在行进过程中还经过了广东、福建这些经济发达且人口密集的区域,受陆源排放的影响,该站位CFC-11的大气浓度也出现了最大值。春季大气中CH2Br2的分布与CFC-11呈现相似的近岸高、远海低的趋势,表明CH2Br2也可能受到陆源气团的影响。春季大气中CH3Br和CH3I的浓度最高值出现在东部远海的S01-9站位,72 h后向轨迹表明,该站位受到中国东北工业区的陆源气团以及黄海和九州岛西部沿岸的海洋气团的共同输送影响。同时该站位表层海水中CH3I浓度(3.63 pmol/L)也较高,较高的风速(10.00 m/s)促进了海−气交换的发生。

    表  10  春季和秋季大气中4种VHCs的浓度(pptv)
    Tab.  10  Concentrations of 4 VHCs (pptv) in the atmosphere of the East China Sea in spring and autumn
    春季站位CFC-11CH3BrCH3ICH2Br2秋季站位CFC-11CH3BrCH3ICH2Br2
    S01-1203.468.671.241.95S01-1194.487.680.940.65
    S01-5186.902.430.421.18S01-3197.7317.131.280.63
    S01-9190.1549.765.431.29S01-4191.8910.340.790.54
    S02-4184.783.020.180.93S01-7199.0210.050.540.06
    S02-8194.046.001.240.99S01-8195.3116.810.520.08
    S03-1203.468.671.241.95S01-10209.0611.000.500.71
    S03-5185.453.560.501.09S02-1227.3659.913.941.85
    S04-4186.161.530.040.76S02-3193.058.691.220.78
    S05-1211.9636.382.172.06S02-4193.1712.530.841.26
    S05-6200.813.040.250.86S02-5194.5312.120.390.07
         S02-8200.799.200.420.19
         S02-9195.398.200.490.20
         S03-1210.0623.050.670.20
         S03-3190.898.080.320.08
         S03-5237.418.480.331.18
         S03-7196.9710.570.320.24
         S04-1205.459.680.930.22
         S04-4196.6711.530.700.12
         S04-6232.5210.430.461.01
         S04-8224.2814.412.000.64
         S05-2197.5817.360.730.03
         S05-4221.6511.450.710.38
    下载: 导出CSV 
    | 显示表格
    图  1  春季和秋季东海典型站位气团的72 h后向轨迹图
    Fig.  1  72 h back trajectories of air masses at typical stations over the East China Sea in spring and autumn

    秋季大气中CFC-11的高值主要出现在长江口和台湾东北部的S03-5和S04-6站位附近。72 h后向轨迹表明,经过S04-6站位的气团起源于河北、山东等地,S03-5站位的低、中、高空3支气团行进轨迹重合,经过中国东北地区、朝鲜和韩国沿岸等地后跨过海洋到达该站位,可能是两个站位的气团在行进过程中都经过东海油田群的附近[33-35],导致了较多的CFC-11排放。秋季大气中CH3Br、CH3I和CH2Br2的最高浓度均出现在S02-1站位,对应了表层海水中CH3I(7.65 pmol/L)和CH2Br2(5.17 pmol/L)的浓度高值,根据72 h后向轨迹图,该气团发源于海洋,并途经韩国和日本的沿岸海域到达该站位,这些海域生物生产力较高,是生源VHCs重要的源。秋季CH2Br2的高值还主要出现在S02-4和S04-8站位附近,S02-4站位具有较高的风速和较高的海表温度,有助于海−气交换的发生;S04-8站位的气团则主要受经过东北、山东等地的陆源气团影响,该大气中CFC-11的浓度也较高(224.27 pptv),陆源输入可能是这些海域CH2Br2的重要来源。秋季大气中4种VHCs浓度在S03-3站位均出现低值。从72 h后向轨迹图可以看出,虽然该站位的气团起源于大陆,但抵达该站位前主要经由黄海上空,且此站位出现了本航次风速的最小值(3.8 m/s),较低的海水释放量和黄海清洁气团的稀释作用可能是导致该海域VHCs浓度较低的原因。

    上述结果表明,陆源气团和海洋气团输送、风速、水温及表层海水中VHCs的浓度均不同程度地影响着大气中VHCs浓度分布。秋季大气中CH3Br的浓度高于春季,而CH3I和CH2Br2浓度较低。大气中VHCs和表层海水中VHCs相关性分析表明(表11表12),春季大气中的CH3I与表层海水中的CH3I存在显著的正相关性(r = 0.675,P < 0.05),与上文海水中CH3I与温度呈显著负相关性的结果相对应,表明受温度控制的海−气交换过程影响了春季海水和大气中CH3I的分布。两个季节大气中CH3I和CH3Br之间均呈现显著正相关性(r = 0.936,P < 0.01;r = 0.857,P < 0.01),说明它们存在相似的来源或去除途径。而两个季节大气中的CH2Br2与CFC-11(r = 0.778,P < 0.01;r = 0.589,P < 0.01)也呈现显著正相关性,CFC-11作为人为来源的表征[55],说明陆源气团的输送也是造成CH2Br2大气中浓度高值的重要原因。

    表  11  春季大气中4种VHCs与表层海水中VHCs的相关性
    Tab.  11  Correlation between 4 VHCs in the atmosphere and VHCs in surface seawater in spring
    变量CFC-11/pptvCH3Br/pptvCH3I/pptvCH2Br2/pptv
    CFC-11/pptv1
    CH3Br /pptv0.3271
    CH3I/pptv0.1810.936**1
    CH2Br2 /pptv0.778**0.4250.3381
    CFC-11/pmol∙L−1−0.0270.695*0.663*−0.105
    CH3Br/pmol∙L−10.743*0.3370.1750.779**
    CH3I/pmol∙L−1−0.2340.6130.675*−0.081
    CH2Br2/pmol∙L−10.768**0.4380.2180.868**
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV 
    | 显示表格
    表  12  秋季大气中4种VHCs与表层海水中VHCs的相关性
    Tab.  12  Correlation between 4 VHCs in the atmosphere and VHCs in surface seawater in autumn
    变量CFC-11/pptvCH3Br/pptvCH3I/pptvCH2Br2/pptv
    CFC-11/pptv1
    CH3Br/pptv0.2681
    CH3I/pptv0.3460.857**1
    CH2Br2/pptv0.589**0.533*0.640**1
    CFC-11/pmol∙L−1−0.03−0.244−0.411−0.559**
    CH3Br/pmol∙L−1−0.170.0570.1670.273
    CH3I/pmol∙L−10.0160.2710.2190.174
    CH2Br2/pmol∙L−1−0.2660.3350.131−0.003
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV 
    | 显示表格

    春季航次东海表层海水中4种VHCs的海−气通量平均值分别为−535.17 nmol/(m2∙d)、10.17 nmol/(m2∙d)、16.69 nmol/(m2∙d)和24.18 nmol/(m2∙d),范围分别为−1400.89 ~ −89.56 nmol/(m2∙d)、−144.42 ~ 67.38 nmol/(m2∙d),0.97 ~ 39.88 nmol/(m2∙d)和4.03 ~ 64.75 nmol/(m2∙d)。秋季航次东海表层海水中4种VHCs的海−气通量平均值分别为−1621.03 nmol/(m2∙d)、41.96 nmol/(m2∙d)、94.32 nmol/(m2∙d)和57.23 nmol/(m2∙d),范围分别为−3553.52 ~ −252.58 nmol/(m2∙d)、−314.11 ~ 415.09 nmol/(m2∙d)、12.60 ~ 201.31 nmol/(m2∙d)和13.94 ~ 156.52 nmol/(m2∙d)。上述结果表明,春季和秋季东海CFC-11的海−气通量均为负值,同时CH3I和CH2Br2的海−气通量均为正值,表明东海是CFC-11的净汇,是CH3I和CH2Br2的净来源。VHCs的海−气通量反映了两个季节东海对CFC-11的吸收过程以及对CH3Br、CH3I和CH2Br2的释放过程。Li等[48]报道的2017年春季黄海、东海海域CH3I和CH2Br2的海−气通量平均值分别为62.9 nmol/(m2∙d)和71.1 nmol/(m2∙d),相较于本文的研究结果更高,而Zou等[47]在2019年冬季黄海、东海海域调查的CH2Br2海−气通量平均值为2.62 nmol/(m2∙d),远低于本文的调查结果。

    春季和秋季风速与CFC-11、CH3Br、CH3I和CH2Br2的海−气通量变化如图2图3所示。研究海域VHCs的海−气通量表现出显著的时空差异性。CFC-11的海−气通量春季高于秋季,主要是由春季较低的气温导致的。CH3Br、CH3I和CH2Br2秋季的海−气通量数值更高,与CH3Br、CH3I和CH2Br2在表层海水中浓度的季节变化基本一致。大部分站点的海−气通量随风速变化而变化,秋季风速高于春季,也导致了秋季CH3Br、CH3I和CH2Br2的通量高于春季。春季CH3I和CH2Br2海−气通量的最低值均出现在S01-1站位,与该站位较低的风速相对应。秋季CFC-11的最低值和CH2Br2的最高值都出现在S01-8站位,该站位出现了本航次中风速的最高值(14.3 m/s)。春季CH3Br的海−气通量的变化幅度较大,最低值出现在S01-9站位,该站位大气中CH3Br浓度较高,较高的风速加快了海−气界面的垂直扩散,较低的水温使其在海水中的溶解度升高,从而使海水与大气间浓度差较小。

    图  2  春季4种VHCs的海−气通量及风速
    Fig.  2  Sea-to-air fluxes and wind speeds of 4 VHCs in spring
    图  3  秋季4种VHCs的海−气通量及风速
    Fig.  3  Sea-to-air fluxes and wind speeds of 4 VHCs in autumn

    (1)秋季东海表层海水中CH3Br和CH3I的浓度高于春季,而CFC-11和CH2Br2的浓度低于春季。两个季节CFC-11均在东部外海出现明显浓度高值。春季表层海水中CH3I的分布主要受温度的影响,秋季则受河流输入影响显著。浮游植物释放是秋季CH2Br2的主要来源。

    (2)大气中VHCs浓度的高值可能与气团的远距离输送、海−气交换和生物释放有关。与春季相比,秋季大气中CFC-11和CH3Br的浓度较高,CH3I和CH2Br2的浓度较低。CFC-11在大气中的分布受季节影响并不明显。两个季节CH3I和CH3Br在大气中均存在相似的来源。

    (3)春季较低的气温导致CFC-11的海−气通量高于秋季,秋季CH3Br、CH3I和CH2Br2的海−气通量更高,主要是受秋季更高的风速影响。春季和秋季东海均表现为CFC-11的汇,同时表现为CH3Br、CH3I和CH2Br2的源。

  • 图  1   春季和秋季东海典型站位气团的72 h后向轨迹图

    Fig.  1.   72 h back trajectories of air masses at typical stations over the East China Sea in spring and autumn

    图  2   春季4种VHCs的海−气通量及风速

    Fig.  2.   Sea-to-air fluxes and wind speeds of 4 VHCs in spring

    图  3   秋季4种VHCs的海−气通量及风速

    Fig.  3.   Sea-to-air fluxes and wind speeds of 4 VHCs in autumn

    表  1   2021年春季和秋季东海采样站位

    Tab.  1   Sampling stations in the East China Sea in spring and autumn 2021

    春季站位经度/°E纬度/°N秋季站位经度/°E纬度/°N
    S01-1*122.7030.00S01-1*122.7030.00
    S01-3123.5030.00S01-3*123.7030.00
    S01-5*124.3030.00S01-4*124.2030.00
    S01-7125.1029.99S01-5124.6930.00
    S01-9*125.8930.00S01-6125.1929.99
    S02-1122.8129.63S01-7*125.6929.99
    S02-3123.3729.32S01-8*126.2130.00
    S02-4*123.6529.17S01-10*127.2030.00
    S02-5123.9429.02S02-1*122.8029.59
    S02-6124.2128.87S02-2123.2329.37
    S02-7124.5128.72S02-3*123.6529.15
    S02-8*124.7828.57S02-4*124.0828.92
    S03-1*122.2828.63S02-5*124.5028.70
    S03-2122.5828.47S02-8*125.7828.02
    S03-3122.8828.31S02-9*126.2027.80
    S03-4123.1828.16S03-1*122.3028.60
    S03-5*123.4828.00S03-2122.6928.37
    S03-6123.7827.84S03-3*123.0828.15
    S04-1121.6327.80S03-5*123.8527.70
    S04-2121.9027.63S03-6124.2427.47
    S04-3122.1727.45S03-7*124.6327.25
    S04-4*122.4327.28S03-8125.0127.02
    S04-5122.7027.10S04-1*121.6527.80
    S05-1*120.9627.00S04-2121.8827.65
    S05-2121.2326.82S04-4*122.3627.35
    S05-3121.5326.63S04-6*122.8327.06
    S05-4121.8226.45S04-8*123.3226.76
    S05-5122.1226.27S12-1126.8228.99
    S05-6*122.4226.09S05-1120.9927.00
    S12-2125.3429.28S05-2*121.3226.81
    S12-3125.0628.92S05-4*121.9926.40
    S23-1124.4528.34S05-5122.3226.20
    S23-2124.1228.09S05-6122.6526.00
    S34-1123.4327.60
    S34-2123.0727.35
    S45-1122.3926.68
    注:*表示在该站位同时进行大气样品采样
    下载: 导出CSV

    表  2   春季和秋季东海表层海水中温度、盐度和Chl a浓度水平

    Tab.  2   Temperature, salinity and Chl a concentration levels in the surface waters of the East China Sea in spring and autumn

    春季站位Chl a/μg∙L−1盐度温度/℃秋季站位Chl a/μg∙L−1盐度温度/℃
    S01-12.0330.7315.3S01-12.9628.9926.2
    S01-30.8134.2316.3S01-30.4131.7826.8
    S01-50.5534.0114.9S01-40.3832.1227.1
    S01-70.8834.1013.7S01-50.3332.6627.0
    S01-91.8534.2315.8S01-60.2933.1527.3
    S02-11.5329.2416.8S01-70.7433.2726.1
    S02-31.1833.1120.3S01-80.5433.4725.0
    S02-43.0033.2516.3S01-100.4633.8226.4
    S02-51.8333.7216.8S02-11.5429.6626.5
    S02-63.9532.6517.3S02-22.3130.9527.0
    S02-72.7734.1817.6S02-31.0231.2327.3
    S02-87.4233.0816.9S02-40.9231.0927.1
    S03-13.3229.7216.0S02-50.3532.7627.5
    S03-21.7732.0115.2S02-80.3434.1226.1
    S03-31.8232.4916.2S02-90.3034.0626.2
    S03-43.4832.0217.6S03-10.9230.7025.3
    S03-514.4731.8716.7S03-20.5633.7326.6
    S03-62.0932.8116.4S03-30.5332.8326.5
    S04-14.8029.5915.6S03-50.3633.7426.7
    S04-21.7331.5917.0S03-60.5133.7926.8
    S04-32.1334.1217.0S03-70.7333.2926.1
    S04-41.4534.1317.1S03-80.3534.0426.3
    S04-51.8034.0417.0S04-10.3729.4723.1
    S05-13.0530.3316.6S04-20.4033.0924.4
    S05-25.1931.0016.1S04-40.4433.1524.6
    S05-35.0032.9816.1S04-60.8834.0723.8
    S05-43.2533.3917.2S04-80.9234.0624.8
    S05-51.9034.3218.8S12-10.2634.2027.4
    S05-60.5134.3119.5S05-10.3729.5823.1
    S12-21.0934.4814.5S05-20.3033.8325.1
    S12-31.0534.5014.6S05-40.6434.1125.0
    S23-12.2233.7616.1S05-50.4034.1326.8
    S23-22.5433.0613.9S05-60.2734.1827.1
    S34-11.8433.4416.8
    S34-22.6132.7216.4
    S45-11.7133.4517.1
    下载: 导出CSV

    表  3   春季表层海水中环境参数间的相关性

    Tab.  3   Correlation between environmental parameters in spring surface seawater

    变量Chl a温度盐度PO43−NH4+SiO32−NO3NO2
    Chl a10.031−0.319−0.1510.2450.223−0.034−0.226
    温度10.074−0.2470.033−0.254−0.24−0.192
    盐度1−0.343*−0.261−0.787**−0.787**−0.173
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV

    表  4   秋季表层海水中环境参数间的相关性

    Tab.  4   Correlation between environmental parameters in autumn surface seawater

    变量Chl a温度盐度PO43−NH4+SiO32−NO3NO2
    Chl a10.071−0.575**−0.187−0.019−0.22−0.0950.078
    温度10.17−0.629**−0.062−0.785**−0.679**−0.442*
    盐度1−0.346*−0.212−0.272−0.554**−0.339
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV

    表  5   春季和秋季东海表层海水中4种VHCs的浓度(pmol/L)

    Tab.  5   Concentrations of 4 VHCs (pmol/L) in surface waters of the East China Sea in spring and autumn

    春季站位CFC-11CH3BrCH3ICH2Br2秋季站位CFC-11CH3BrCH3ICH2Br2
    S01-12.295.011.678.60S01-11.483.695.436.03
    S01-39.473.942.263.45S01-32.2712.633.332.53
    S01-55.034.412.672.82S01-41.388.103.403.25
    S01-710.170.232.862.94S01-54.2911.043.963.79
    S01-910.603.993.633.90S01-65.648.6210.824.74
    S02-13.976.882.365.71S01-711.222.563.593.31
    S02-38.322.261.124.32S01-84.973.023.324.00
    S02-45.055.421.454.18S01-107.912.723.592.53
    S02-59.250.241.855.32S02-11.987.097.655.17
    S02-64.631.862.555.69S02-25.526.676.085.43
    S02-75.640.902.433.88S02-31.8913.904.763.97
    S02-88.743.411.363.48S02-42.5223.929.564.27
    S03-12.288.691.247.09S02-57.1011.975.802.86
    S03-24.510.422.715.68S02-89.980.006.742.33
    S03-33.740.142.103.06S02-914.341.873.862.94
    S03-45.772.123.064.32S03-112.768.904.988.23
    S03-56.453.902.215.19S03-210.578.494.734.00
    S03-620.090.182.653.46S03-37.514.134.154.83
    S04-12.225.612.237.66S03-56.967.484.313.75
    S04-22.320.221.505.41S03-67.7517.643.593.99
    S04-37.183.282.803.16S03-79.395.655.983.62
    S04-43.050.331.422.76S03-82.7511.704.001.69
    S04-525.476.402.714.62S04-113.985.568.093.55
    S05-18.749.691.8713.69S04-27.427.7422.106.00
    S05-24.393.771.598.20S04-45.9515.055.294.42
    S05-36.715.323.904.74S04-66.540.024.833.40
    S05-47.174.452.165.05S04-86.358.714.092.67
    S05-55.4411.302.423.52S12-116.663.874.832.42
    S05-65.344.972.102.51S05-16.8110.888.973.27
    S12-22.191.202.125.10S05-28.324.509.546.40
    S12-37.285.512.304.52S05-49.1111.696.353.25
    S23-137.780.172.213.57S05-56.232.268.072.66
    S23-213.404.793.504.48S05-62.924.468.262.54
    S34-14.0412.121.684.29     
    S34-29.9712.162.593.43     
    S45-111.370.352.114.67     
    下载: 导出CSV

    表  6   中国近海不同季节表层海水中CFC-11、CH3Br、CH3I和CH2Br2的浓度(pmol/L)

    Tab.  6   Concentrations of CFC-11, CH3Br, CH3I, and CH2Br2 (pmol/L) in the surface waters of the coastal China Seas in different seasons

    季节海域CFC-11CH3BrCH3ICH2Br2来源
    春季2015长江口13.9(6.7 ~ 23.0)6.3(3.4 ~ 10.1)6.0(1.9 ~ 11.1)[26]
    2017东海8.1(1.8 ~ 22.6)6.3(1.8 ~ 13.0)[32]
    2018长江口5.76(2.58 ~ 14.34)5.38(0.74 ~ 17.99)[45]
    2020长江口5.88(0.97 ~ 24.4)8.44(0.59 ~ 25.4)[30]
    2021东海8.06(2.19 ~ 37.78)4.05(0.14 ~ 12.16)2.26(1.12 ~ 3.90)4.85(2.51 ~ 13.69)本文
    秋季2018长江口5.22(1.66 ~ 22.76)15.91(7.85 ~ 44.45)[46]
    2019长江口7.19(1.1 ~ 43.8)6.22(0.93 ~ 18.2)[30]
    2020南海5.35(0.46 ~ 17.82)1.26(0.02 ~ 2.63)2.58(1.28 ~ 5.17)[29]
    2021东海6.98(1.38 ~ 16.66)7.77(0.22 ~ 23.92)6.18(3.32 ~ 22.10)3.87(1.69 ~ 8.23)本文
    冬季2019黄东海2.73(0.21 ~ 9.29)2.96(1.55 ~ 9.19)[47]
    下载: 导出CSV

    表  7   春季表层海水中4种VHCs的浓度与环境参数的相关性

    Tab.  7   Correlation between the concentrations of 4 VHCs in surface seawater and environmental parameters in spring

    变量CFC-11/pmol∙L−1CH3Br/pmol∙L−1CH3I/pmol∙L−1CH2Br2/pmol∙L−1
    CFC-11/pmol∙L−11
    CH3Br/pmol∙L−1−0.1531
    CH3I/pmol∙L−10.24−0.021
    CH2Br2/pmol∙L−1−0.194−0.242−0.2421
    Chl-a/μg∙L−1−0.0760.061−0.040.203
    温度/℃−0.0390.092−0.330*−0.127
    盐度0.294−0.2260.247−0.706**
    PO43−/μmol∙L−10.134−0.1010.0460.29
    NH4+/μmol∙L−1−0.174−0.0490.190.195
    SiO32−/μmol∙L−1−0.2110.231−0.2470.776**
    NO3/μmol∙L−1−0.1790.264−0.2560.722**
    NO2/μmol∙L−10.025−0.011−0.0510.245
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV

    表  8   秋季表层海水中4种VHCs的浓度与环境参数的相关性

    Tab.  8   Correlation between the concentrations of 4 VHCs in surface seawater and environmental parameters in autumn

    变量CFC-11/pmol∙L−1CH3Br/pmol∙L−1CH3I/pmol∙L−1CH2Br2/pmol∙L−1
    CFC-11/pmol∙L−11
    CH3Br/pmol∙L−1−0.361*1
    CH3I/pmol∙L−1−0.0160.0561
    CH2Br2/pmol∙L−1−0.0070.0760.3431
    Chl-a/μg∙L−1−0.326−0.037−0.0710.449**
    温度/℃−0.2680.170−0.270−0.147
    盐度−0.265−0.239−0.113−0.455**
    PO43−/μmol∙L−10.240−0.0730.091−0.039
    NH4+/μmol∙L−10.147−0.036−0.137−0.001
    SiO32−/μmol∙L−10.427*−0.1230.1760.050
    NO3/μmol∙L−10.2960.0290.1660.149
    NO2/μmol∙L−10.2710.1430.366*0.643**
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV

    表  9   中国近海不同季节大气中CFC-11、CH3Br、CH3I和CH2Br2的浓度(pptv)

    Tab.  9   Atmospheric concentrations of CFC-11, CH3Br, CH3I and CH2Br2 (pptv) in different seasons over the coastal China Seas

    季节海域CFC-11CH3BrCH3ICH2Br2来源
    春季2015长江口206.3(199.0 ~ 215.9)8.8(3.9 ~ 12.9)0.7(0.1 ~ 1.6)[26]
    2017东海219.5(185.9 ~ 259.8)4.5(2.2 ~ 13.4)[32]
    2018长江口1.1(0.3 ~ 3.7)1.7(0.9 ~ 6.1)[45]
    2020长江口234.1(199.0 ~ 257.7)0.6(0.1 ~ 1.5)1.1(0.6 ~ 1.6)[30]
    2021东海197.7(184.8 ~ 211.9)12.3(1.5 ~ 49.8)1.3(0.1 ~ 5.4)1.3(0.8 ~ 2.1)本文
    秋季2019长江口228.9(163.1 ~ 339.2)1.5(0.8 ~ 2.5)3.1(2.3 ~ 4.1)[30]
    2020南海184.1(118.6 ~ 242.4)9.2(2.7 ~ 4.3)1.1(0.6 ~ 2.6)[29]
    2021东海206.8(159.8 ~ 213.0)14.0(7.7 ~ 60.0)0.9(0.3 ~ 3.9)0.5(0.1 ~ 1.8)本文
    冬季2019黄东海260.7(214.9 ~ 374.2)0.6(0.2 ~ 2.8)1.2(0.4 ~ 2.2)[47]
    下载: 导出CSV

    表  10   春季和秋季大气中4种VHCs的浓度(pptv)

    Tab.  10   Concentrations of 4 VHCs (pptv) in the atmosphere of the East China Sea in spring and autumn

    春季站位CFC-11CH3BrCH3ICH2Br2秋季站位CFC-11CH3BrCH3ICH2Br2
    S01-1203.468.671.241.95S01-1194.487.680.940.65
    S01-5186.902.430.421.18S01-3197.7317.131.280.63
    S01-9190.1549.765.431.29S01-4191.8910.340.790.54
    S02-4184.783.020.180.93S01-7199.0210.050.540.06
    S02-8194.046.001.240.99S01-8195.3116.810.520.08
    S03-1203.468.671.241.95S01-10209.0611.000.500.71
    S03-5185.453.560.501.09S02-1227.3659.913.941.85
    S04-4186.161.530.040.76S02-3193.058.691.220.78
    S05-1211.9636.382.172.06S02-4193.1712.530.841.26
    S05-6200.813.040.250.86S02-5194.5312.120.390.07
         S02-8200.799.200.420.19
         S02-9195.398.200.490.20
         S03-1210.0623.050.670.20
         S03-3190.898.080.320.08
         S03-5237.418.480.331.18
         S03-7196.9710.570.320.24
         S04-1205.459.680.930.22
         S04-4196.6711.530.700.12
         S04-6232.5210.430.461.01
         S04-8224.2814.412.000.64
         S05-2197.5817.360.730.03
         S05-4221.6511.450.710.38
    下载: 导出CSV

    表  11   春季大气中4种VHCs与表层海水中VHCs的相关性

    Tab.  11   Correlation between 4 VHCs in the atmosphere and VHCs in surface seawater in spring

    变量CFC-11/pptvCH3Br/pptvCH3I/pptvCH2Br2/pptv
    CFC-11/pptv1
    CH3Br /pptv0.3271
    CH3I/pptv0.1810.936**1
    CH2Br2 /pptv0.778**0.4250.3381
    CFC-11/pmol∙L−1−0.0270.695*0.663*−0.105
    CH3Br/pmol∙L−10.743*0.3370.1750.779**
    CH3I/pmol∙L−1−0.2340.6130.675*−0.081
    CH2Br2/pmol∙L−10.768**0.4380.2180.868**
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV

    表  12   秋季大气中4种VHCs与表层海水中VHCs的相关性

    Tab.  12   Correlation between 4 VHCs in the atmosphere and VHCs in surface seawater in autumn

    变量CFC-11/pptvCH3Br/pptvCH3I/pptvCH2Br2/pptv
    CFC-11/pptv1
    CH3Br/pptv0.2681
    CH3I/pptv0.3460.857**1
    CH2Br2/pptv0.589**0.533*0.640**1
    CFC-11/pmol∙L−1−0.03−0.244−0.411−0.559**
    CH3Br/pmol∙L−1−0.170.0570.1670.273
    CH3I/pmol∙L−10.0160.2710.2190.174
    CH2Br2/pmol∙L−1−0.2660.3350.131−0.003
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平上显著相关
    下载: 导出CSV
  • [1]

    HUGHES C, SUN S. Light and brominating activity in two species of marine diatom[J]. Marine Chemistry, 2016, 181: 1-9. doi: 10.1016/j.marchem.2016.02.003

    [2]

    WMO. Scientific assessment of ozone depletion: 2018[R]. Geneva, Switzerland: WMO.

    [3]

    MOLINA M J, ROWLAND F S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature, 1974, 249: 810-812.

    [4]

    MONTZKA S A, DUTTON G S, YU P F, et al. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11[J]. Nature, 2018, 557(7705): 413-417. doi: 10.1038/s41586-018-0106-2

    [5]

    RIGBY M, PARK S, SAITO T, et al. Increase in CFC-11 emissions from eastern China based on atmospheric observations[J]. Nature, 2019, 569(7757): 546-550. doi: 10.1038/s41586-019-1193-4

    [6]

    PARK S, WESTERN L M, SAITO T, et al. A decline in emissions of CFC-11 and related chemicals from eastern China[J]. Nature, 2021, 590(7846): 433-437. doi: 10.1038/s41586-021-03277-w

    [7]

    MOORE R M, WEBB M, TOKARCZYK R, et al. Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures[J]. Journal of Geophysical Research: Oceans, 1996, 101(C9): 20899-20908. doi: 10.1029/96JC01248

    [8]

    LEEDHAM E C, HUGHES C, KENG F S L, et al. Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae[J]. Biogeosciences, 2013, 10(6): 3615-3633. doi: 10.5194/bg-10-3615-2013

    [9]

    RICHTER U, WALLACE D W R. Production of methyl iodide in the tropical Atlantic Ocean[J]. Geophysical Research Letters, 2004, 31(23): L23S03.

    [10] 王甜甜, 康建成, 李卫江, 等. 东海上升流研究进展[C]//中国地理学会2006年学术年会论文摘要集. 兰州: 中国地理学会, 2006: 1.
    [11] 杨桂朋, 尹士序, 陆小兰, 等. 吹扫−捕集气相色谱法测定海水中挥发性卤代烃[J]. 中国海洋大学学报, 2007, 37(2): 299-304.
    [12]

    LI H J, YOKOUCHI Y, AKIMOTO H. Measurement of methyl halides in the marine atmosphere[J]. Atmospheric Environment, 1999, 33(12): 1881-1887. doi: 10.1016/S1352-2310(98)00303-3

    [13] 袁 达, 何 真, 杨桂朋, 等. 东海海水和大气中挥发性卤代烃的分布、来源和海−气通量研究[J]. 中国海洋大学学报, 2017, 47(8): 93-102.
    [14]

    HE Z, YANG G P, LU X L, et al. Halocarbons in the marine atmosphere and surface seawater of the south Yellow Sea during spring[J]. Atmospheric Environment, 2013, 80: 514-523. doi: 10.1016/j.atmosenv.2013.08.025

    [15]

    PARSONS T R, MAIT Y, LALLI C M. A manual of chemical & biological methods for seawater analysis[M]. New York: Pergamon, 1984: 101-104.

    [16]

    HANSEN H P, KOROLEFF F. Determination of nutrients[M]//GRASSHOFF K, KREMLING K, EHRHARDT M. Methods of Seawater Analysis. 3rd ed. Weinheim: Wiley, 1999: 159-228.

    [17]

    LISS P S, SLATER P G. Flux of gases across the air-sea interface[J]. Nature, 1974, 247(5438): 181-184. doi: 10.1038/247181a0

    [18]

    WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373-7382. doi: 10.1029/92JC00188

    [19]

    DE BRUYN W J, SALTZMAN E S. Diffusivity of methyl bromide in water[J]. Marine Chemistry, 1997, 57(1/2): 55-59.

    [20]

    ZHENG M, DE BRUYN W J, SALTZMAN E S. Measurements of the diffusion coefficients of CFC-11 and CFC-12 in pure water and seawater[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1375-1379. doi: 10.1029/97JC02761

    [21]

    GROSZKO W M. An estimate of the global air-sea flux of methyl chloride, methyl bromide, and methyl iodide[D]. Halifax: Dalhousie University, 1999.

    [22]

    KHALIL M A K, MOORE R M, HARPER D B, et al. Natural emissions of chlorine-containing gases: reactive chlorine emissions inventory[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8333-8346. doi: 10.1029/1998JD100079

    [23]

    WARNER M J, WEISS R F. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1985, 32(12): 1485-1497. doi: 10.1016/0198-0149(85)90099-8

    [24]

    MOORE R M, GEEN C E, TAIT V K. Determination of Henry’s law constants for a suite of naturally occurring halogenated methanes in seawater[J]. Chemosphere, 1995, 30(6): 1183-1191. doi: 10.1016/0045-6535(95)00009-W

    [25] 吴晓丹, 宋金明, 李学刚. 长江口邻近海域水团特征与影响范围的季节变化[J]. 海洋科学, 2014, 38(12): 110-119. doi: 10.11759/hykx20140305001
    [26]

    YUAN D, HE Z, YANG G P. Spatiotemporal distributions of halocarbons in the marine boundary air and surface seawater of the Changjiang estuary and its adjacent East China Sea[J]. Marine Pollution Bulletin, 2019, 140: 227-240. doi: 10.1016/j.marpolbul.2019.01.040

    [27] 孙 毅, 于 娟, 王绍为, 等. 夏季东海微表层与下层海水营养盐的分布特征研究[J]. 中国海洋大学学报, 2017, 47(1): 52-60.
    [28]

    LIU Y N, YVON-LEWIS S A, HU L, et al. CHBr3, CH2Br2, and CHClBr2 in U. S. coastal waters during the Gulf of Mexico and East Coast Carbon cruise[J]. Journal of Geophysical Research: Oceans, 2011, 116(C10): C10004. doi: 10.1029/2010JC006729

    [29] 刘志雯, 何 真, 邹亚文, 等. 南海东北部及吕宋海峡邻近海域海水和大气中挥发性卤代烃的浓度分布与海−气通量[J]. 中国海洋大学学报, 2023, 53(1): 85-94.
    [30]

    ZOU Y W, HE Z, LIU C Y, et al. Spatiotemporal distribution and environmental control factors of halocarbons in the Yangtze River Estuary and its adjacent marine area during autumn and spring[J]. Environmental Pollution, 2022, 304: 119244. doi: 10.1016/j.envpol.2022.119244

    [31]

    NING X, LIU Z, CAI Y, et al. Physicobiological oceanographic remote sensing of the East China Sea: satellite and in situ observations[J]. Journal of Geophysical Research: Oceans, 1998, 103(C10): 21623-21635. doi: 10.1029/98JC01612

    [32] 魏 英, 何 真, 杨桂朋. 春季东海海水和大气中挥发性卤代烃的分布特征研究[J]. 海洋环境科学, 2020, 39(1): 9-15.
    [33] 刘树保, 李 欣, 周永文. 大港油田地区挥发性有机物分析[J]. 油气田环境保护, 2016, 26(4): 26-28.
    [34] 朱晓茵. 东海平湖油气田数字化油田工作平台研究[J]. 华东科技, 2017 (12): 67.
    [35] 许 红, 张威威, 季兆鹏, 等. 东海陆架盆地大春晓油气田成藏动力学特征及成藏模式[J]. 石油与天然气地质, 2019, 40(1): 1-11.
    [36]

    NIEUWENHUIJSEN M J, TOLEDANO M B, EATON N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review[J]. Occupational and Environmental Medicine, 2000, 57(2): 73-85. doi: 10.1136/oem.57.2.73

    [37]

    QUACK B, WALLACE D W R. Air-sea flux of bromoform: controls, rates, and implications[J]. Global Biogeochemical Cycles, 2003, 17(1): 1023.

    [38]

    YOKOUCHI Y, NOJIRI Y, BARRIE L A, et al. Atmospheric methyl iodide: high correlation with surface seawater temperature and its implications on the sea-to-air flux[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D12): 12661-12668. doi: 10.1029/2001JD900083

    [39] 宋 悦, 崔晓山, 陈娟娟, 等. 不同高温胁迫条件下的坛紫菜中植物激素分析[J]. 水产学报, 2017, 41(10): 1578-1587.
    [40]

    LOVELOCK J E, MAGGS R J, WADE R J. Halogenated hydrocarbons in and over the Atlantic[J]. Nature, 1973, 241(5386): 194-196. doi: 10.1038/241194a0

    [41]

    CARPENTER L J, LISS P S. On temperate sources of bromoform and other reactive organic bromine gases[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D16): 20539-20547. doi: 10.1029/2000JD900242

    [42]

    GIESE B, LATURNUS F, ADAMS F C, et al. Release of volatile iodinated C1-C4 hydrocarbons by marine macroalgae from various climate zones[J]. Environmental Science & Technology, 1999, 33(14): 2432-2439.

    [43]

    MANLEY S L, GOODWIN K, NORTH W J. Laboratory production of bromoform, methylene bromide, and methyl iodide by macroalgae and distribution in nearshore southern California waters[J]. Limnology and Oceanography, 1992, 37(8): 1652-1659. doi: 10.4319/lo.1992.37.8.1652

    [44]

    MOORE R M, ZAFIRIOU O C. Photochemical production of methyl iodide in seawater[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D8): 16415-16420. doi: 10.1029/94JD00786

    [45] 綦倩倩, 何 真, 杨桂朋, 等. 春季长江口及其邻近海域海水和大气中CH3I、CH2Br2和CHBr3的浓度分布与海−气通量[J]. 中国海洋大学学报, 2021, 51(6): 59-69.
    [46]

    HAN Y, HE Z, YANG G P. Distributions of volatile halocarbons and impacts of ocean acidification on their production in coastal waters of China[J]. Science of the Total Environment, 2021, 752: 141756. doi: 10.1016/j.scitotenv.2020.141756

    [47]

    ZOU Y W, HE Z, LIU C Y, et al. Coastal observation of halocarbons in the Yellow Sea and East China Sea during winter: spatial distribution and influence of different factors on the enzyme-mediated reactions[J]. Environmental Pollution, 2021, 290: 118022. doi: 10.1016/j.envpol.2021.118022

    [48]

    LI Y, HE Z, YANG G P, et al. Volatile halocarbons in the marine atmosphere and surface seawater: diurnal and spatial variations and influences of environmental factors[J]. Atmospheric Environment, 2019, 214: 116820. doi: 10.1016/j.atmosenv.2019.116820

    [49]

    QUACK B, PEEKEN I, PETRICK G, et al. Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling[J]. Journal of Geophysical Research: Oceans, 2007, 112(C10): C10006.

    [50]

    CHUCK A L, TURNER S M, LISS P S. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10022.

    [51]

    HE Z, LIU Q L, ZHANG Y J, et al. Distribution and sea-to-air fluxes of volatile halocarbons in the Bohai Sea and North Yellow Sea during spring[J]. Science of the Total Environment, 2017, 584-585: 546-553. doi: 10.1016/j.scitotenv.2017.01.065

    [52] 王保栋. 黄海和东海营养盐分布及其对浮游植物的限制[J]. 应用生态学报, 2003, 14(7): 1122-1126. doi: 10.3321/j.issn:1001-9332.2003.07.018
    [53]

    WMO. Report on the unexpected emissions of CFC-11[R]. Geneva, Switzerland: WMO, 2021.

    [54]

    ZHENG P G, CHEN T S, DONG C, et al. Characteristics and sources of halogenated hydrocarbons in the Yellow River Delta region, northern China[J]. Atmospheric Research, 2019, 225: 70-80. doi: 10.1016/j.atmosres.2019.03.039

    [55] 郑淑兰, 邓永智, 袁晓婕, 等. 北极楚科奇海氟氯烃CFC-11的分布特征及其化学示踪[J]. 厦门大学学报(自然科学版), 2010, 49(4): 541-547.
图(3)  /  表(12)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  9
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-05-02
  • 录用日期:  2023-10-06
  • 刊出日期:  2024-02-27

目录

/

返回文章
返回
x 关闭 永久关闭