• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋气溶胶采样、提取方法对痕量元素溶解度的影响

薛金林 任景玲

引用本文:
Citation:

海洋气溶胶采样、提取方法对痕量元素溶解度的影响

    作者简介: 薛金林(1991-), 女, 山东淄博人, 硕士研究生, 主要从事痕量元素的海洋生物地球化学循环研究, E-mail:xuejinlin1991@163.com;
    通讯作者: 任景玲(1973-), 女, 天津人, 教授, 主要从事痕量元素的生物地球化学循环研究, E-mail:renjingl@ouc.edu.cn
  • 基金项目: 国家自然科学基金面上项目:"南海北部溶解态铝的分布、影响因素及其对陆源物质输送的示踪"(41676072);国家基础研究发展规划项目(973计划):"南海陆坡生态系统动力学与生物资源的可持续利用"(2014CB441502)
  • 中图分类号: X132

The effects of sampling and extraction methods on the solubility of trace elements in marine aerosols

  • 摘要: 海洋气溶胶中痕量元素的溶解度对于精确评估大气输送量及痕量元素的生物地球化学行为具有重要的意义。目前文献报道的气溶胶中痕量元素溶解度的变化范围很大,除气溶胶自身的物理化学性质及其在迁移过程中受大气过程的影响外,不同的采样和提取方法对结果引入的差异不容忽视。对于痕量元素含量较低的海洋气溶胶,这一问题更为突出,不仅影响各研究结果之间的可比性,也不利于数据的解读。为此,"痕量元素及其同位素的海洋生物地球化学研究"(GEOTRACES)国际海洋研究计划在2008年发起了国际气溶胶采样及分析方法的互校实验。根据互校实验结果展开综述,从海洋气溶胶的采样器、采样膜、淋溶和消解方法等方面进行比较,并给出海洋气溶胶采样和提取的最优方法建议。
  • 图 1  全球铁与沙尘关系示意图(改绘自文献[5])

    Figure 1.  Schematic view of global iron and dust connections (redraw from the result of reference [5])

    图 2  气溶胶采样器原理

    Figure 2.  Sampling principle diagram of aerosol sampler

    图 3  溢流法装置(改绘自文献[69])

    Figure 3.  A flow-through reactor for aerosol solubility experiment(Redraw from the result of reference [69])

    表 1  不同地区气溶胶中痕量元素溶解度(%)

    Table 1.  Solubility of trace elements of different areas(%)

    下载: 导出CSV

    表 2  2008年GEOTRACES气溶胶互校实验中实验室内和实验室间痕量元素可溶态及总浓度精密度对比(2008年9月11~21日样品)

    Table 2.  Range of precisions for aerosol-soluble concentrations and total aerosol concentrations within laboratories and among laboratories, results from the 2008 GEOTRACES aerosol intercalibration experiment (11~21 Sep 08)

    下载: 导出CSV

    表 3  采样膜消解后空白值(ng/g)

    Table 3.  Filter digested blanks (ng/g)

    下载: 导出CSV

    表 4  海洋气溶胶中痕量元素溶解态提取方法

    Table 4.  Marine aerosol soluble extraction techniques

    下载: 导出CSV

    表 5  海洋气溶胶消解方法

    Table 5.  Marine aerosol digestion techniques

    下载: 导出CSV
  • [1] DUCE R A, HOFFMAN G L, ZOLLER W H.Atmospheric trace metals at remote northern and southern hemisphere sites:pollution or natural?[J].Science, 1975, 187(4171):59-61. doi: 10.1126/science.187.4171.59
    [2] RAHN K A.Relative importances of North America and Eurasia as sources of arctic aerosol[J].Atmospheric Environment, 1981, 15(8):1447-1455 doi: 10.1016/0004-6981(81)90351-6
    [3] GUIEU C, CHESTER R, NIMMO M, et al.Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 1997, 44(3/4):655-674.
    [4] BISHOP J K B, DAVIS R E, SHERMAN J T.Robotic observations of dust storm enhancement of carbon biomass in the north pacific[J].Science, 2002, 298(5594):817-821. doi: 10.1126/science.1074961
    [5] JICKELLS T D, AN Z S, ANDERSEN KK, et al.Global iron connections between desert dust, ocean biogeochemistry, and climate[J].Science, 2005, 308(5718):67-71. doi: 10.1126/science.1105959
    [6] HSU S C, LIU S C, LIN C Y, et al.Metal compositions of PM10 and PM2.5 aerosols in Taipei during Spring, 2002[J].Terrestrial Atmospheric and Oceanic Sciences, 2004, 15(5):925-948. doi: 10.3319/TAO.2004.15.5.925(ADSE)
    [7] HSU S C, GONG G C, SHIAH F K, et al.Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea:East Asian dust and pollution outflows vs.Southeast Asian biomass burning[J].Atmospheric Chemistry and Physics Discussions, 2014, 14(15):21433-21472. doi: 10.5194/acpd-14-21433-2014
    [8] REN J L, ZHANG G L, ZHANG J, et al.Distribution of dissolved aluminum in the Southern Yellow Sea:Influences of a dust storm and the springbloom[J].Marine Chemistry, 2011, 125(1/4):69-81.
    [9] LIAO W H, YANG S C, HO T Y.Trace metal composition of size-fractionated plankton in the Western Philippine Sea:The impact of anthropogenic aerosol deposition[J].Limnology and Oceanography, 2017, 62(5):2243-2259. doi: 10.1002/lno.10564
    [10] SHI J H, GAO H W, ZHANG J, et al.Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J].Journal of Geophysical Research:Atmospheres, 2012, 117(D17):D17304.
    [11] SHI J H, ZHANG J, GAO H W, et al.Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2013, 97:43-50. doi: 10.1016/j.dsr2.2013.05.004
    [12] BAKER A R, CROOT P L.Atmospheric and marine controls on aerosol iron solubility in seawater[J].Marine Chemistry, 2010, 120(1/4):4-13.
    [13] DUCE R A, LISS P S, MERRILL J T, et al.The atmospheric input of trace species to the worldocean[J].Global Biogeochemical Cycles, 1991, 5(3):193-259. doi: 10.1029/91GB01778
    [14] CHESTER R, LIN F J, MURPHYK J T.A three stage sequential leaching scheme for the characterisation of the sources and environmental mobility of trace metals in the marine aerosol[J].Environmental Technology Letters, 1989, 10(10):887-900. doi: 10.1080/09593338909384810
    [15] GUIEU C, THOMAS A J.Saharan aerosols: from the soil to the ocean[M]//GUERZONI S, CHESTER R.The Impact of Desert Dust across the Mediterranean.Dordrecht: Springer, 1996: 207-216.
    [16] DABEK-ZLOTORZYNSKA E, KELLY M, CHEN H, et al.Application of capillary electrophoresis combined with a modified BCR sequential extraction for estimating of distribution of selected trace metals in PM2.5 fractions of urban airborne particulate matter[J].Chemosphere, 2005, 58(10):1365-1376. doi: 10.1016/j.chemosphere.2004.09.082
    [17] 常燕, 冯冲, 瞿建国, 等.上海大气总悬浮颗粒物中金属的可溶性特征[J].环境科学, 2015, 36(4):1164-1172.
    [18] AGUILAR-ISLAS A M, WU J F, REMBER R, et al.Dissolution of aerosol-derived iron in seawater:Leach solution chemistry, aerosol type, and colloidal iron fraction[J].Marine Chemistry, 2010, 120(1/2/3/4):25-33.
    [19] JOHANSEN A M, SIEFERT R L, HOFFMANN M R.Chemical composition of aerosols collected over the tropical North Atlantic Ocean[J].Journal of Geophysical Research:Atmospheres, 2000, 105(D12):15277-15312. doi: 10.1029/2000JD900024
    [20] HLAVAY J, POLYÁK K, MÉSZÁROS E.Determination of the distribution of elements as a function of particle size in aerosol samples by sequential leaching[J].Analyst, 1998, 123(5):859-863. doi: 10.1039/a708117k
    [21] QURESHI S, DUTKIEWICZV A, KHAN A R, et al.Elemental composition of PM2.5 aerosols in Queens, New York:Solubility and temporal trends[J].Atmospheric Environment, 2006, 40(S2):238-251.
    [22] DESBOEUFS K V, SOFIKITIS A, LOSNO R, et al.Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter[J].Chemosphere, 2005, 58(2):195-203. doi: 10.1016/j.chemosphere.2004.02.025
    [23] TSAI F, TU J Y, HSU S C, et al.Case study of the Asian dust and pollutant event in spring 2006:source, transport, and contribution to Taiwan[J].Science of the Total Environment, 2014, 478:163-174. doi: 10.1016/j.scitotenv.2014.01.072
    [24] BUCK C S, LANDING W M, RESING J A.Particle size and aerosol iron solubility:A high-resolution analysis of Atlanticaerosols[J].Marine Chemistry, 2010, 120(1/2/3/4):14-24.
    [25] HSU S C, WONG G T F, GONG G C, et al.Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea[J].Marine Chemistry, 2010, 120(1/2/3/4):116-127.
    [26] HSU S C, LIU S C, HUANG Y T, et al.A criterion for identifying Asian dust events based on Al concentration datacollected from northern Taiwan between 2002 and early 2007[J].Journal of Geophysical Research:Atmospheres, 2008, 113(D18):D18306. doi: 10.1029/2007JD009574
    [27] BAKER A R, JICKELLS T D.Mineral particle size as a control on aerosol ironsolubility[J].Geophysical Research Letters, 2006, 33(17):L17608. doi: 10.1029/2006GL026557
    [28] BAKER A R, JICKELLS T D, WITT M, et al.Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean[J].Marine Chemistry, 2006, 98(1):43-58.
    [29] ZHUANG G, YI Z, DUCER A, et al.Link between iron and sulphur cycles suggested by detection of Fe(Ⅱ) in remote marine aerosols[J].Nature, 1992, 355(6360):537-539. doi: 10.1038/355537a0
    [30] MESKHIDZE N, CHAMEIDES W L, NENES A.Dust and pollution:A recipe for enhanced ocean fertilization?[J].Journal of Geophysical Research:Atmospheres, 2005, 110(D3):D03301.
    [31] ZHANG D Z, IWASAKA Y, SHI G Y, et al.Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China[J].Journal of Geophysical Research:Atmospheres, 2005, 110(D6):D06302.
    [32] PRUPPACHER H R, JAENICKE R.The processing of water vapor and aerosols by atmospheric clouds, a globalestimate[J].Atmospheric Research, 1995, 38(1/2/3/4):283-295.
    [33] ANDREAE M O.Raising dust in the greenhouse[J].Nature, 1996, 380(6573):389-390. doi: 10.1038/380389a0
    [34] HOBBS P V.Aerosol-cloud-climate interactions[M].San Diego:Academic Press, 1993:1-31.
    [35] MATTHIJSEN J, BUILTJES P J H, SEDLAK D L.Cloud model experiments of the effect of iron and copper on tropospheric ozone under marine and continental conditions[J].Meteorology and Atmospheric Physics, 1995, 57(1/2/3/4):43-60.
    [36] SEDLAK D L, HOIGNÉ J, DAVID M M, et al.The cloudwater chemistry of iron and copper at Great Dun Fell, U.K.[J].Atmospheric Environment, 1997, 31(16):2515-2526. doi: 10.1016/S1352-2310(96)00080-5
    [37] DESBOEUFS K V, LOSNO R, COLIN J L.Factors influencing aerosol solubility during cloudprocesses[J].Atmospheric Environment, 2001, 35(20):3529-3537. doi: 10.1016/S1352-2310(00)00472-6
    [38] ZHU X R, PROSPERO J M, SAVOIE D L, et al.Photoreduction of iron(Ⅲ) in marine mineral aerosol solutions[J].Journal of Geophysical Research:Atmospheres, 1993, 98(D5):9039-9046. doi: 10.1029/93JD00202
    [39] DEGUILLAUME L, LERICHE M, DESBOEUFS K, et al.Transition metals in atmospheric liquid phases.sources, reactivity, and sensitive parameters[J].ChemInform, 2005, 36(49):3388-3427.
    [40] ZHU X R, PROSPERO J M, MILLERO F J.Diel variability of soluble Fe(Ⅱ) and solubletotal Fe in North African dust in the trade winds at Barbados[J].Journal of Geophysical Research:Atmospheres, 1997, 1022(D17):21297-21305.
    [41] EREL Y, PEHKONEN S O, Hoffmann M R.Redox chemistry of iron in fog and stratusclouds[J].Journal of Geophysical Research:Atmospheres, 1993, 98(D10):18423-18434. doi: 10.1029/93JD01575
    [42] SIEFERT R L, PEHKONEN S O, Erel Y, et al.Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids[J].Geochimica et Cosmochimica Acta, 1994, 58(15):3271-3279. doi: 10.1016/0016-7037(94)90055-8
    [43] LÓPEZ-GARCÍA P, GELADO-CABALLERO M D, COLLADO-SÁNCHEZ C, et al.Solubility of aerosol trace elements:Sources and deposition fluxes in the Canary Region[J].Atmospheric Environment, 2016, 148:167-174.
    [44] ZHUANG G S, DUCE R A, KESTER D R.The dissolution of atmospheric iron in surface seawater of the open ocean[J].Journal of Geophysical Research:Oceans, 1990, 95(C9):16207-16216. doi: 10.1029/JC095iC09p16207
    [45] HSU S C, LIN F J, JENG W L.Seawater solubility of natural and anthropogenic metals within ambient aerosols collected from Taiwan coastalsites[J].Atmospheric Environment, 2005, 39(22):3989-4001. doi: 10.1016/j.atmosenv.2005.03.033
    [46] 朱敏, 石金辉, 贲孝宇, 等.青岛大气气溶胶中微量元素溶解度及影响因素[J].中国环境科学, 2016, 36(11):3245-3252.
    [47] MORTON P L, LANDING W M, HSU S C, et al.Methods for the sampling and analysis of marine aerosols:results from the 2008 GEOTRACES aerosolintercalibration experiment[J].Limnology and Oceanography Methods, 2013, 11(2):62-78. doi: 10.4319/lom.2013.11.62
    [48] MARPLE V A, WILLEKE K.Impactor design[J].Atmospheric Environment, 1983, 10(10):891-896.
    [49] 朱元, 郑海洋, 顾学军, 等.大气气溶胶的检测方法研究[J].环境科学与技术, 2005, 28(S1):175-177.
    [50] BUCK C S, LANDING W M, RESING J.Pacific Ocean aerosols:Deposition and solubility of iron, aluminum, and other trace elements[J].Marine Chemistry, 2013, 157:117-130. doi: 10.1016/j.marchem.2013.09.005
    [51] SHELLEY R U, LANDING W M, USSHER S J, et al.Characterisation of aerosol provenance from the fractional solubility of Fe (Al, Ti, Mn, Co, Ni, Cu, Zn, Cd and Pb) in North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) using a two stage leach[J].Biogeosciences Discussions, 2017:1-31, doi:10.5194/bg-2017-415.
    [52] LONGO A F, FENG Y, LAI B, et al.Influence of atmospheric processes on the solubility and composition of iron in Saharan dust[J].Environmental Science & Technology, 2016, 50(13):6912-6920.
    [53] SHELLEY R U, MORTON P L, LANDING W M.Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2014, 116:262-272.
    [54] CHEN Y, SIEFERT R L.Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean[J].Journal of Geophysical Research, 2004, 109(D9):D09305.
    [55] PEKNEY N J, DAVIDSON C I.Determination of trace elements in ambient aerosol samples[J].Analytica Chimica Acta, 2005, 540(2):269-277. doi: 10.1016/j.aca.2005.03.065
    [56] BUCK C S, LANDING W M, RESING J A, et al.Aerosol iron and aluminum solubility in the northwest Pacific Ocean:Results from the 2002 IOC cruise[J].Geochemistry, Geophysics, Geosystems, 2006, 7(4):Q04M07.
    [57] KARTHIKEYAN S, JOSHI U M, BALASUBRAMANIAN R.Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter:Evaluation of bioavailability[J].Analytica Chimica Acta, 2006, 576(1):23-30. doi: 10.1016/j.aca.2006.05.051
    [58] UPADHYAY N, MAJESTIC B J, PRAPAIPONG P, et al.Evaluation of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS[J].Analytical and Bioanalytical Chemistry, 2009, 394(1):255-266. doi: 10.1007/s00216-009-2671-6
    [59] BUCK C S, PAYTAN A.Evaluation of commonly used filter substrates for the measurement of aerosol trace elementsolubility[J].Limnology and Oceanography Methods, 2012, 10(10):790-806. doi: 10.4319/lom.2012.10.790
    [60] STAFFORD R G, ETTINGER H J.Filter efficiency as a function of particle size andvelocity[J].Atmospheric Environment, 1972, 6(5):353-362. doi: 10.1016/0004-6981(72)90201-6
    [61] WATTS S F, YAAQUB R, DAVIES T.The use of Whatman 41 filter papers for high volume aerosol sampling[J].Atmospheric Environment, 1987, 21(12):2731-2732. doi: 10.1016/0004-6981(87)90207-1
    [62] SPOKES L J, JICKELLS T D, LIM B.Solubilisation of aerosol trace metals by cloud processing:A laboratory study[J].Geochimica et Cosmochimica Acta, 1994, 58(15):3281-3287. doi: 10.1016/0016-7037(94)90056-6
    [63] CHESTER R, NIMMO M, CORCORAN P A.Rain water-aerosol trace metal relationships at capferrat:A coastal site in the Western Mediterranean[J].Marine Chemistry, 1997, 58(3/4):293-312.
    [64] CHESTER R, NIMMO M, FONES G R, et al.The solubility of Pb in coastal marine rainwaters:pH-dependent relationships[J].Atmospheric Environment, 2000, 34(23):3875-3887. doi: 10.1016/S1352-2310(00)00177-1
    [65] GUERZONI S, MOLINAROLI E, ROSSINI P, et al.Role of desert aerosol in metal fluxes in the Mediterraneanarea[J].Chemosphere, 1999, 39(2):229-246. doi: 10.1016/S0045-6535(99)00105-8
    [66] EYCKMANS K, ZHANG J, HOOG J D, et al.Leaching of nutrients and trace metals from aerosol samples; a comparison between a Re-circulation and an ultrasound system[J].International Journal of Environmental Analytical Chemistry, 2001, 80(3):227-243. doi: 10.1080/03067310108044372
    [67] HSU S C, LIN F J, LIU T H, et al.Short time dissolution kinetics of refractory elements Fe, Al, andTi in Asian outflow-impacted marine aerosols and implications[J].Atmospheric Environment, 2013, 79:93-100. doi: 10.1016/j.atmosenv.2013.06.037
    [68] BAKER A R, THOMAS M, BANGE H W, et al.Soluble trace metals in aerosols over the tropical south east-Pacific offshore of Peru[J].Biogeosciences, 2016, 13(3):817-825. doi: 10.5194/bg-13-817-2016
    [69] WU J F, REMBER R, CAHILL C.Dissolution of aerosol iron in the surface waters of the North Pacific and North Atlantic oceans as determined by a semicontinuous flow-through reactor method[J].Global Biogeochemical Cycles, 2007, 21(4):GB4010.
    [70] CHEN Y, STREET J, PAYTAN A.Comparison between pure-water-and seawater-soluble nutrient concentrations of aerosols from the Gulf of Aqaba[J].Marine Chemistry, 2006, 101(1/2):141-152.
    [71] YEATMAN S G, SPOKES L J, DENNIS P F, et al.Can the study of nitrogen isotopic composition in size-segregated aerosol nitrate and ammonium be used to investigate atmospheric processing mechanisms?[J].Atmospheric Environment, 2001, 35(7):1337-1345. doi: 10.1016/S1352-2310(00)00457-X
    [72] BAKER A R, KELLY S D, BISWAS K F, et al.Atmospheric deposition of nutrients to the Atlantic Ocean[J].Geophysical Research Letters, 2003, 30(24):2296.
    [73] GOMBERT S, TRAUBENBERG C R D, LOSNO R, et al.Biomonitoring of element deposition using mosses in the 2000 French survey:identifying sources and spatial trends[J].Journal of Atmospheric Chemistry, 2004, 49(1/2/3):479-502.
    [74] HASSAN N M, RASMUSSEN P E, DABEK-ZLOTORZYNSKA E, et al.Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry:Maximizing Total element recoveries[J].Water, Air, and Soil Pollution, 2007, 178(1/2/3/4):323-334.
    [75] BOWIE A R, TOWNSEND A T, LANNUZEL D, et al.Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry[J].Analytica Chimica Acta, 2010, 676(1/2):15-27.
    [76] MEASURES C I, SATO T, VINK S, et al.The fractional solubility ofaluminium from mineral aerosols collected in Hawaii and implications for atmospheric deposition of biogeochemically important trace elements[J].Marine Chemistry, 2010, 120(1/2/3/4):144-153.
    [77] TRAPP J M, MILLERO F J, PROSPERO J M.Trends in the solubility of iron in dust-dominated aerosols in the equatorial Atlantic trade winds:importance of iron speciation andsources[J].Geochemistry, Geophysics, Geosystems, 2010, 11(3):Q03014.
    [78] XIA L, GAO Y.Chemical Composition and Size Distributions of Coastal Aerosols Observed on the US EastCoast[J].Marine Chemistry, 2010, 119(1//2/3/4):77-90.
  • 加载中
图(3)表(5)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  316
  • PDF下载量:  14
出版历程
  • 收稿日期:  2018-01-26
  • 录用日期:  2018-03-20
  • 刊出日期:  2019-12-20

海洋气溶胶采样、提取方法对痕量元素溶解度的影响

    作者简介:薛金林(1991-), 女, 山东淄博人, 硕士研究生, 主要从事痕量元素的海洋生物地球化学循环研究, E-mail:xuejinlin1991@163.com
    通讯作者: 任景玲(1973-), 女, 天津人, 教授, 主要从事痕量元素的生物地球化学循环研究, E-mail:renjingl@ouc.edu.cn
  • 中国海洋大学 海洋化学理论与工程技术教育部重点实验室, 山东 青岛 266100
基金项目: 国家自然科学基金面上项目:"南海北部溶解态铝的分布、影响因素及其对陆源物质输送的示踪"(41676072);国家基础研究发展规划项目(973计划):"南海陆坡生态系统动力学与生物资源的可持续利用"(2014CB441502)

摘要: 海洋气溶胶中痕量元素的溶解度对于精确评估大气输送量及痕量元素的生物地球化学行为具有重要的意义。目前文献报道的气溶胶中痕量元素溶解度的变化范围很大,除气溶胶自身的物理化学性质及其在迁移过程中受大气过程的影响外,不同的采样和提取方法对结果引入的差异不容忽视。对于痕量元素含量较低的海洋气溶胶,这一问题更为突出,不仅影响各研究结果之间的可比性,也不利于数据的解读。为此,"痕量元素及其同位素的海洋生物地球化学研究"(GEOTRACES)国际海洋研究计划在2008年发起了国际气溶胶采样及分析方法的互校实验。根据互校实验结果展开综述,从海洋气溶胶的采样器、采样膜、淋溶和消解方法等方面进行比较,并给出海洋气溶胶采样和提取的最优方法建议。

English Abstract

  • 气溶胶在大气中的远距离传输可达几百乃至几千公里[1-2],对元素的海洋生物地球化学循环有重要的影响。在大洋中,尤其在高营养盐低叶绿素区域(high nitrate low chlorophyll, 简称HNLC),大气沉降是生物可利用性铁和其他微量元素的重要来源,可以诱发浮游植物的生长[3-4]图 1所示为全球铁与沙尘关系示意图,由大气向海洋输入的铁通量会改变全球海洋生产力,进而引起海洋对二氧化碳固定量和温室气体排放量的变化,从而影响全球气候,气候变化又会改变地表特性、沙尘可利用性和大气输入的铁通量,四者通过各种反应机制构成反馈循环,大气输入在全球铁循环中占据了非常重要的地位[5]

    图  1  全球铁与沙尘关系示意图(改绘自文献[5])

    Figure 1.  Schematic view of global iron and dust connections (redraw from the result of reference [5])

    目前频发的亚洲沙尘暴及快速的工业发展而增加的大气污染物排放,可能会使周边海域痕量元素的大气输入量增加,对我国周边海域的浮游植物水华以及元素的收支平衡产生重要影响[6-9]。2007年爆发了两次大规模亚洲沙尘暴,黄海沙尘暴期间溶解态铁、磷和总无机氮的输送通量比非沙尘暴期间分别增大约15、13、5倍,沙尘暴过后3~4 d黄海爆发水华[10-11]。海洋气溶胶中痕量元素的可溶解部分更易被生物利用,进而作用于海洋生态系统。因此,用海洋气溶胶中可溶态痕量元素含量来评估大气输入量更有意义。大气科学中用气溶胶中各元素溶解部分占其总量的百分比表示气溶胶中痕量元素的“溶解度”[12]。通过研究海洋气溶胶中痕量元素的溶解度,可以了解海洋气溶胶的物理化学性质和迁移过程中经历的大气过程等对大气向海洋生态系统输入的生物可利用性痕量元素量的影响。气溶胶颗粒自身的物理化学性质以及在传输过程中经历的大气过程都会影响气溶胶中痕量元素的溶解度,虽然不同地区气溶胶中痕量元素溶解度的差异可能并不影响全球大洋中痕量元素的总输入量[5, 13],但在某些距沙漠较远的海域,尤其在HNLC的敏感区域,海洋气溶胶中痕量元素溶解度的差异会对该区域痕量元素的生物地球化学循环产生重要影响。因此有关海洋气溶胶中痕量元素溶解度的研究受到广泛关注。

    • 目前国际上对于气溶胶中痕量元素溶解度的研究较多,研究区域涵盖沙漠[14-15]、城市[16-17]、大洋[18-19]等,对多种类型气溶胶中痕量元素溶解度进行了分析。表 1列举了不同区域气溶胶中痕量元素的溶解度,文献报道的气溶胶中痕量元素溶解度差异较大,如Fe的溶解度变化范围在0.001%~50%,Zn的溶解度范围是0.2%~84%,Cu的变化范围为3.7%~54%等等。撒哈拉沙漠地区气溶胶中痕量元素溶解度最低,距离沙漠较远的城市和大洋气溶胶中痕量元素溶解度相对较高,仅对比海洋气溶胶中各元素溶解度,其变化范围依然非常大。

      表 1  不同地区气溶胶中痕量元素溶解度(%)

      Table 1.  Solubility of trace elements of different areas(%)

      影响气溶胶中痕量元素溶解度的自然因素有很多,包括气溶胶颗粒自身的物理化学性质,如气溶胶中元素存在的化学形态[20-22]、气溶胶的来源[23-25]、浓度[26]和粒度[27-28]等;还有气溶胶传输过程中经历的大气过程,如酸化过程[29-31]、云过程[32-37]、光化学反应[38-42]等。除这些自然因素外,有学者提出目前气溶胶采样和提取方法的不统一也是造成数据离散的重要因素。由于目前尚未有完整的针对海洋气溶胶采样及提取的标准方法,各国学者根据各自需要而采取不同的采样及提取方法,这不仅使数据间的可比性降低,还限制了我们对这些溶解度差异的认识。这一问题近些年来引起了国际上诸多学者的广泛重视。

      GEOTRACES国际组织于2008年进行了国际间海洋气溶胶的互校实验,实验结果显示,对于同一时期样品,无论是海洋气溶胶中痕量元素可溶解态的浓度还是消解后的总浓度,参加互校实验的各国实验室其内部结果的精密度均要好于实验室之间结果的精密度[47](表 2),这表明目前尚未统一的采样膜、淋洗试剂、淋洗条件、消解方法等确实会对实验结果产生影响。而且可溶解态提取结果实验室内部和实验室之间精密度相差更大,这说明可溶解态提取方法的不同是人为引入数据差异的主要因素,这一弊端应该引起足够重视,且亟需找到最合理的采样和提取方法,并进行统一和规范化。

      表 2  2008年GEOTRACES气溶胶互校实验中实验室内和实验室间痕量元素可溶态及总浓度精密度对比(2008年9月11~21日样品)

      Table 2.  Range of precisions for aerosol-soluble concentrations and total aerosol concentrations within laboratories and among laboratories, results from the 2008 GEOTRACES aerosol intercalibration experiment (11~21 Sep 08)

    • 目前常用的气溶胶采样器主要可分为3种类型:1)使用过滤原理的滤器式采样器,采集气溶胶颗粒的尺寸范围较大,且适于大体积连续采样;2)使用撞击原理的分级式撞击采样器[48],可以根据不同的粒径区间而分别采集气溶胶颗粒,适用于对气溶胶颗粒的尺寸范围有要求的研究;3)模拟自然干沉降的代用面采样器,采集颗粒尺寸范围最大,但所需要的采样时间长。这3种采样方法各有利弊,应根据对象的具体情况加以选择。进行具体操作时,可根据需要将几种采样器进行联用,取长补短达到更好的采样效果[49]。海洋气溶胶在大气中浓度较低,不适合使用代用面采样器,现在采集海洋气溶胶使用最多的是滤器式采样器和分级式撞击采样器,下文讨论的采样膜主要适用于这两种采样器。

      分级式撞击采样器和滤器式采样器的采样原理如图 2所示,滤器式采样器采用过滤原理,把进入采样器的所有尺度的气溶胶颗粒全部收集到采样膜上,可以进行大流量采样,但不能对气溶胶进行粒度分级。分级式撞击采样器由一系列分级撞击单元组成,每个单元包括一个进样孔和一个撞击盘,气溶胶颗粒随气流通过进样孔进入撞击单元,其中较大的颗粒因为惯性较大而撞在撞击盘上被截留,小颗粒会随气流继续进入下一级单元,气流流速越大,采集的颗粒物粒径越小。在分级撞击采样器的撞击单元后面可以设置一张采样膜作为底膜,采集撞击单元未捕捉到的小粒径颗粒物,Morton等[47]发现用分级撞击采样器进行海洋气溶胶分级采样时,不加底膜会导致元素损失,尤其是V、Zn、Pb等人为源占比较大的元素,因为人为源元素在小粒度的气溶胶颗粒中含量更高,所以,强烈建议在进行分级采样时设置底膜,防止发生损失。

      图  2  气溶胶采样器原理

      Figure 2.  Sampling principle diagram of aerosol sampler

      进行海洋气溶胶采集时船燃烧燃料产生的烟煤是最大的污染源,采样过程中极易发生烟煤沾污,对实验结果产生严重干扰;此外海洋飞沫也会对实验结果产生影响,应尽量避免。因此,海洋气溶胶采样时对采样器放置位置、采样时风向和风速有严格要求,这也是海洋气溶胶采样与其他气溶胶采样最大的不同。海洋气溶胶采样时采样器应放置在船首方向的高处,尽量远离海面以避免海洋飞沫的影响,当相对风速小于0.5 m/s或相对风向超出±60°时应停止采样以避免烟煤沾污,最好使用带有定风向、风速采样系统的智能采样器[50-51]。Tisch大流量采样器(Tisch Environmental, TE-5170V- BL)是GEOTRACES常用的海洋气溶胶采样器[47, 51-53],此种采样器强度较大,足以胜任天气恶劣且时间较长(1月以上)的海上采样工作,且可以装配分级采样单元(Tisch Environmental, TE-235)进行分级采样,国际上应用较多。

    • 目前对海洋气溶胶采样膜的选择是根据研究地区气溶胶含量、研究目标元素以及采样方法等因素共同决定的。文献报道中常用于海洋气溶胶样品采集的滤膜主要有:Whatman 41纤维素膜、混合纤维素脂微孔膜、聚碳酸酯微孔膜、聚醚砜微孔膜、聚四氟乙烯微孔膜、玻璃纤维滤膜、微孔石英纤维滤膜等[47, 54-58],不同的膜材料可能会带来潜在的沾污或损失。

      聚氨酯泡沫(PUF)、聚丙烯(PP)、纤维素(CL)和石英(QF)4种材料的采样膜消解后的痕量元素空白值[58]表 3所示,这4种采样膜的空白值大小顺序为:QF > PUF > PP > CL,对于大多数元素,纤维素膜的空白值比其他采样膜的空白值低约3个数量级,适用于痕量元素研究。石英滤膜的消解背景值较高且基质复杂,不适于海洋气溶胶中痕量金属元素的研究,但采集一些挥发性的元素,比如Hg、水溶有机碳和硝酸盐等,因为要求对滤膜事先进行加热蒸发以降低空白值,石英滤膜是一个较好的选择。

      表 3  采样膜消解后空白值(ng/g)

      Table 3.  Filter digested blanks (ng/g)

      Buck和Paytan[59]证实了滤膜材质会对元素溶解度产生显著影响。他们选取了8种常用的气溶胶采样膜:混合纤维素酯膜(0.45 μm),聚碳酸酯经迹蚀刻膜(0.4 μm),亲水性混合纤维素酯(0.45 μm),聚醚砜膜(0.45 μm),聚碳酸酯膜(0.4 μm),硼硅酸盐玻璃膜(0.7 μm),石英纤维膜,聚四氟乙烯膜(0.45 μm),使用超纯水做提取剂,用溢流法(方法见第4节)提取“瞬间”溶出量,测定了10种痕量元素(Al、P、Ti、V、Mn、Fe、Ni、Cu、Zn、和Pb)的溶解度以及强酸消解后各种膜的空白值。所有种类膜的空白值都远低于样品浓度值,但Cu在混合纤维素脂膜上空白值高达样品浓度的40%。溶解度结果的统计分析结果显示,滤膜材质的不同对几乎所有痕量元素溶解度都产生了影响。其中,Ti在亲水性混合纤维素酯膜上溶解度最高,Fe在聚醚砜膜上溶解度最低,Zn和Pb在聚四氟乙烯滤膜上溶解度最低,Ni是唯一一个在所有膜上均未发现显著性差异的元素,而Cu的溶解度在所有采样膜中都有显著性差异。各元素在不同采样膜上表现出的差异性也有部分原因是由于膜的消解方法不同而导致的。在选择膜材料时,除考虑其空白值和对被分析元素的影响外,操作上的难易程度也应考虑在内。例如,聚碳酸酯膜易吸附静电,使操作难度加大,而聚醚砜膜、亲水性混合纤维素酯膜、混合纤维素酯膜机械强度大操作更容易。

      通过不同材质滤膜的空白对比发现,在目前常用的采样膜中,Whatman 41纤维素膜(W41膜)痕量元素背景值低,对颗粒物的采集效率较高[60-61],且易于分样、适用于需要较低痕量元素背景值的研究。采样膜在使用前普遍用高纯酸清洗以降低元素空白,但Morton等[47]在对比经过清洗和未经过清洗的W41膜的空白值后发现,未清洗过的W41膜中Al、Ti、V、Zn和Pb的浓度与清洗过的膜中相当甚至更低,且重复样的精密度更好。清洗过的W41膜中相对较高的痕量元素空白值,可能是进行清洗时采样膜被沾污所致,若对采样膜操作得当,未洗过的W41滤膜中的痕量元素空白值足以胜任海洋气溶胶样品的采集工作,但W41膜不适用一些易挥发物质的采集,比如Hg和水溶性有机碳等。

    • 由于海洋气溶胶中痕量元素溶解态提取条件不同而产生的对其溶解度的影响主要体现在以下几个方面:提取试剂种类、pH[62-64]、溶液离子强度[28]、溶液颗粒物浓度[65]和动力学条件[66-67]等。目前各国学者均根据自身的研究目标自行决定海洋气溶胶中可溶态痕量金属的提取方式,如用醋酸铵缓冲溶液提取Fe,模拟海洋气溶胶中Fe在雨水中的释放[68];用海水做提取剂,模拟海洋气溶胶中痕量元素在海水中的释放[18];用超纯水提取生物可利用部分[56]等。所用的提取试剂、提取方式、提取时间等都有很大差异(表 4)。

      表 4  海洋气溶胶中痕量元素溶解态提取方法

      Table 4.  Marine aerosol soluble extraction techniques

      对于海洋气溶胶样品中痕量元素溶解态的提取,多数实验室用超纯水,而有些实验室则采用甲酸盐、乙酸铵或碳酸氢钠作为提取剂。提取手段有浸没、震荡、超声震荡、溢流法[69]等。溢流法是一种半连续的溶解态提取方法,将采样膜放置在一个底部装有过滤阀门的敞口容器中,加入一定量的提取剂,与采样膜接触预定时间后将提取剂过滤,从而得到一定时间内的溶出浓度(图 3)。分析方法主要包括电感耦合等离子体质谱、电感耦合原子发射光谱法和紫外可见分光光度法等。SO42-和NO3- (或NO3- + NO2-)采用比色法或离子色谱法测定[18-19, 70-73]

      图  3  溢流法装置(改绘自文献[69])

      Figure 3.  A flow-through reactor for aerosol solubility experiment(Redraw from the result of reference [69])

      目前所使用的提取方法差异较大,且由于海洋气溶胶中溶解态元素的浓度较低,因而导致其结果的变化范围较大。Morton等[47]在对2008年GEOTRACES气溶胶互校实验数据总结时发现,使用醋酸铵作为提取剂时Fe和Pb等元素的溶解度比使用其他种类提取剂高10~50倍。在对海洋气溶胶中Fe的提取剂进行比较时发现,随着提取剂的改变,Fe的溶解态浓度的变化会有以下规律:醋酸铵(pH 4.7)>甲酸盐(pH 4.2)>海水(pH 8)=超纯水+去铁胺(pH 8)=超纯水(pH 5.5)[47]。不同方法的选择使得实验室间的精密度无法评估,通过对比不同提取方法的操作及结果发现,超纯水溢流法的适用范围广、操作灵活且方便[56]。所以,推荐大家使用统一的溶解态提取方法以增加数据间的可比性。

      海洋气溶胶样品的消解,大多采用HNO3和HF,加热和加压通过特别设计的微波、加热板或电炉[71]的方法完成(表 5),Morton等[47]通过对照试验结果得出,海洋气溶胶中大多数痕量元素使用混酸(HNO3+HF)加热或用HNO3加热、加压便足以彻底消解,但对于Ti等其他更难溶解的元素则推荐混酸(HNO3+HF)加热、加压的方式以确保消解完全。除消解方法的差异外,由于尚未有海洋气溶胶标准物质,目前多使用其他标准物质代替,其种类繁多(表 5),但这些标准物质均不适用于自然气溶胶,这也会影响实验结果的精密度和准确度。所以现在亟需推出一种能模拟自然气溶胶,相对便宜,均一性好的气溶胶标准物质。

      表 5  海洋气溶胶消解方法

      Table 5.  Marine aerosol digestion techniques

    • 综上所述,海洋气溶胶采样时,应对采样位置、风向、风速进行严格控制,避免烟煤和海洋飞沫沾污。在研究海洋气溶胶中的痕量元素时,建议用Whatman 41纤维素膜采样,Whatman 41纤维素膜痕量元素背景值低,对颗粒物的采集效率较高,且易于分样、适用于需要较低痕量元素背景值的研究;研究海洋气溶胶中的Hg和水溶有机碳等易挥发物质时,建议用石英膜采样。测定海洋气溶胶中的元素总浓度时,建议采用混酸(HNO3+HF)加热或用HNO3加热加压的方法,此方法足以消解大部分元素,但对于一些难溶的元素(如Ti),则推荐用混酸(HNO3+HF)加热加压的方式。对于海洋气溶胶中元素溶解态的提取,推荐使用超纯水溢流法,此方法适用范围广且操作灵活方便。

      海洋气溶胶中痕量元素含量较低,由于采样及提取方法不同引入的差异影响较大,制定针对海洋气溶胶中痕量元素的标准采样方法、提取方法,并且推出适用于海洋气溶胶的标准物质,对提高各研究间数据的对比性有着重要意义,是目前亟待解决的问题。各研究间数据的比对可以为研究世界各地海洋气溶胶中痕量元素溶解度的自然差异提供相关的技术支持,也有助于解释和研究影响海洋气溶胶中痕量元素溶解度的自然因素。在对目前各研究数据进行比对时,采样及提取方法的差异应考虑在内。

参考文献 (78)

目录

    /

    返回文章